#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Core;
using System.Xml;
using System.Diagnostics;
using HeuristicLab.DataAnalysis;
using HeuristicLab.Operators;
using HeuristicLab.Random;
using HeuristicLab.Selection;
using HeuristicLab.Logging;
using HeuristicLab.Data;
using HeuristicLab.Operators.Programmable;
using HeuristicLab.Evolutionary;
using HeuristicLab.Modeling;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.GP.StructureIdentification {
public abstract class AlgorithmBase : ItemBase, IAlgorithm, IStochasticAlgorithm {
public virtual string Name { get { return "GP"; } }
public virtual string Description { get { return "TODO"; } }
public virtual double MutationRate {
get { return GetVariableInjector().GetVariable("MutationRate").GetValue().Data; }
set { GetVariableInjector().GetVariable("MutationRate").GetValue().Data = value; }
}
public virtual int PopulationSize {
get { return GetVariableInjector().GetVariable("PopulationSize").GetValue().Data; }
set { GetVariableInjector().GetVariable("PopulationSize").GetValue().Data = value; }
}
public virtual bool SetSeedRandomly {
get { return GetRandomInjector().GetVariable("SetSeedRandomly").GetValue().Data; }
set { GetRandomInjector().GetVariable("SetSeedRandomly").GetValue().Data = value; }
}
public virtual int RandomSeed {
get { return GetRandomInjector().GetVariable("Seed").GetValue().Data; }
set { GetRandomInjector().GetVariable("Seed").GetValue().Data = value; }
}
public virtual IOperator ProblemInjector {
get { return algorithm.SubOperators[0]; }
set {
value.Name = "ProblemInjector";
algorithm.RemoveSubOperator(0);
algorithm.AddSubOperator(value, 0);
}
}
public virtual IModel Model {
get {
if (!engine.Terminated) throw new InvalidOperationException("The algorithm is still running. Wait until the algorithm is terminated to retrieve the result.");
IScope bestModelScope = engine.GlobalScope.GetVariableValue("BestValidationSolution", false);
return CreateGPModel(bestModelScope);
}
}
public virtual int Elites {
get { return GetVariableInjector().GetVariable("Elites").GetValue().Data; }
set { GetVariableInjector().GetVariable("Elites").GetValue().Data = value; }
}
public virtual int MaxTreeSize {
get { return GetVariableInjector().GetVariable("MaxTreeSize").GetValue().Data; }
set { GetVariableInjector().GetVariable("MaxTreeSize").GetValue().Data = value; }
}
public virtual int MaxTreeHeight {
get { return GetVariableInjector().GetVariable("MaxTreeHeight").GetValue().Data; }
set { GetVariableInjector().GetVariable("MaxTreeHeight").GetValue().Data = value; }
}
public virtual int Parents {
get { return GetVariableInjector().GetVariable("Parents").GetValue().Data; }
set { GetVariableInjector().GetVariable("Parents").GetValue().Data = value; }
}
public virtual double PunishmentFactor {
get { return GetVariableInjector().GetVariable("PunishmentFactor").GetValue().Data; }
set { GetVariableInjector().GetVariable("PunishmentFactor").GetValue().Data = value; }
}
public virtual bool UseEstimatedTargetValue {
get { return GetVariableInjector().GetVariable("UseEstimatedTargetValue").GetValue().Data; }
set { GetVariableInjector().GetVariable("UseEstimatedTargetValue").GetValue().Data = value; }
}
private IOperator algorithm;
[Storable]
private SequentialEngine.SequentialEngine engine;
public IEngine Engine {
get { return engine; }
protected set { engine = (SequentialEngine.SequentialEngine)value; }
}
public AlgorithmBase() {
engine = new SequentialEngine.SequentialEngine();
CombinedOperator algo = CreateAlgorithm();
engine.OperatorGraph.AddOperator(algo);
engine.OperatorGraph.InitialOperator = algo;
SetSeedRandomly = true;
Elites = 1;
MutationRate = 0.15;
PopulationSize = 1000;
MaxTreeSize = 100;
MaxTreeHeight = 10;
Parents = 2000;
PunishmentFactor = 10;
UseEstimatedTargetValue = false;
}
protected internal virtual CombinedOperator CreateAlgorithm() {
CombinedOperator algo = new CombinedOperator();
algo.Name = "GP";
SequentialProcessor seq = new SequentialProcessor();
IOperator problemInjector = CreateProblemInjector();
RandomInjector randomInjector = new RandomInjector();
randomInjector.Name = "Random Injector";
IOperator globalInjector = CreateGlobalInjector();
IOperator initialization = CreateInitialization();
IOperator funLibInjector = CreateFunctionLibraryInjector();
IOperator treeEvaluatorInjector = new HL2TreeEvaluatorInjector();
IOperator mainLoop = CreateMainLoop();
mainLoop.Name = "Main loop";
IOperator treeCreator = CreateTreeCreator();
MeanSquaredErrorEvaluator evaluator = new MeanSquaredErrorEvaluator();
evaluator.GetVariableInfo("MSE").ActualName = "Quality";
evaluator.GetVariableInfo("SamplesStart").ActualName = "TrainingSamplesStart";
evaluator.GetVariableInfo("SamplesEnd").ActualName = "TrainingSamplesEnd";
evaluator.Name = "Evaluator";
IOperator crossover = CreateCrossover();
IOperator manipulator = CreateManipulator();
IOperator selector = CreateSelector();
LeftReducer cleanUp = new LeftReducer();
seq.AddSubOperator(problemInjector);
seq.AddSubOperator(randomInjector);
seq.AddSubOperator(globalInjector);
seq.AddSubOperator(funLibInjector);
seq.AddSubOperator(treeEvaluatorInjector);
seq.AddSubOperator(initialization);
seq.AddSubOperator(mainLoop);
seq.AddSubOperator(cleanUp);
initialization.AddSubOperator(treeCreator);
initialization.AddSubOperator(evaluator);
mainLoop.AddSubOperator(selector);
mainLoop.AddSubOperator(crossover);
mainLoop.AddSubOperator(manipulator);
mainLoop.AddSubOperator(evaluator);
algo.OperatorGraph.AddOperator(seq);
algo.OperatorGraph.InitialOperator = seq;
this.algorithm = seq;
return algo;
}
protected internal virtual IOperator CreateProblemInjector() {
return new EmptyOperator();
}
protected internal abstract IOperator CreateSelector();
protected internal abstract IOperator CreateCrossover();
protected internal abstract IOperator CreateTreeCreator();
protected internal abstract IOperator CreateFunctionLibraryInjector();
protected internal virtual IOperator CreateGlobalInjector() {
VariableInjector injector = new VariableInjector();
injector.Name = "Global Injector";
injector.AddVariable(new HeuristicLab.Core.Variable("Generations", new IntData(0)));
injector.AddVariable(new HeuristicLab.Core.Variable("MutationRate", new DoubleData()));
injector.AddVariable(new HeuristicLab.Core.Variable("PopulationSize", new IntData()));
injector.AddVariable(new HeuristicLab.Core.Variable("Elites", new IntData()));
injector.AddVariable(new HeuristicLab.Core.Variable("Maximization", new BoolData(false)));
injector.AddVariable(new HeuristicLab.Core.Variable("MaxTreeHeight", new IntData()));
injector.AddVariable(new HeuristicLab.Core.Variable("MaxTreeSize", new IntData()));
injector.AddVariable(new HeuristicLab.Core.Variable("EvaluatedSolutions", new IntData(0)));
injector.AddVariable(new HeuristicLab.Core.Variable("TotalEvaluatedNodes", new DoubleData(0)));
injector.AddVariable(new HeuristicLab.Core.Variable("Parents", new IntData()));
injector.AddVariable(new HeuristicLab.Core.Variable("PunishmentFactor", new DoubleData()));
injector.AddVariable(new HeuristicLab.Core.Variable("UseEstimatedTargetValue", new BoolData()));
return injector;
}
protected internal abstract IOperator CreateManipulator();
protected internal virtual IOperator CreateInitialization() {
CombinedOperator init = new CombinedOperator();
init.Name = "Initialization";
SequentialProcessor seq = new SequentialProcessor();
SubScopesCreater subScopesCreater = new SubScopesCreater();
subScopesCreater.GetVariableInfo("SubScopes").ActualName = "PopulationSize";
UniformSequentialSubScopesProcessor subScopesProc = new UniformSequentialSubScopesProcessor();
SequentialProcessor individualSeq = new SequentialProcessor();
OperatorExtractor treeCreater = new OperatorExtractor();
treeCreater.Name = "Tree generator (extr.)";
treeCreater.GetVariableInfo("Operator").ActualName = "Tree generator";
OperatorExtractor evaluator = new OperatorExtractor();
evaluator.Name = "Evaluator (extr.)";
evaluator.GetVariableInfo("Operator").ActualName = "Evaluator";
MeanSquaredErrorEvaluator validationEvaluator = new MeanSquaredErrorEvaluator();
validationEvaluator.GetVariableInfo("MSE").ActualName = "ValidationQuality";
validationEvaluator.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart";
validationEvaluator.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd";
Counter evalCounter = new Counter();
evalCounter.GetVariableInfo("Value").ActualName = "EvaluatedSolutions";
Sorter sorter = new Sorter();
sorter.GetVariableInfo("Descending").ActualName = "Maximization";
sorter.GetVariableInfo("Value").ActualName = "Quality";
seq.AddSubOperator(subScopesCreater);
seq.AddSubOperator(subScopesProc);
seq.AddSubOperator(sorter);
subScopesProc.AddSubOperator(individualSeq);
individualSeq.AddSubOperator(treeCreater);
individualSeq.AddSubOperator(evaluator);
individualSeq.AddSubOperator(validationEvaluator);
individualSeq.AddSubOperator(evalCounter);
init.OperatorGraph.AddOperator(seq);
init.OperatorGraph.InitialOperator = seq;
return init;
}
protected internal virtual IOperator CreateMainLoop() {
CombinedOperator main = new CombinedOperator();
SequentialProcessor seq = new SequentialProcessor();
IOperator childCreater = CreateChildCreater();
IOperator replacement = CreateReplacement();
BestSolutionStorer solutionStorer = new BestSolutionStorer();
solutionStorer.GetVariableInfo("Quality").ActualName = "ValidationQuality";
solutionStorer.GetVariableInfo("BestSolution").ActualName = "BestValidationSolution";
solutionStorer.AddSubOperator(CreateBestSolutionProcessor());
BestAverageWorstQualityCalculator qualityCalculator = new BestAverageWorstQualityCalculator();
BestAverageWorstQualityCalculator validationQualityCalculator = new BestAverageWorstQualityCalculator();
validationQualityCalculator.Name = "BestAverageWorstValidationQualityCalculator";
validationQualityCalculator.GetVariableInfo("Quality").ActualName = "ValidationQuality";
validationQualityCalculator.GetVariableInfo("BestQuality").ActualName = "BestValidationQuality";
validationQualityCalculator.GetVariableInfo("AverageQuality").ActualName = "AverageValidationQuality";
validationQualityCalculator.GetVariableInfo("WorstQuality").ActualName = "WorstValidationQuality";
IOperator loggingOperator = CreateLoggingOperator();
Counter counter = new Counter();
counter.GetVariableInfo("Value").ActualName = "Generations";
IOperator loopCondition = CreateLoopCondition(seq);
seq.AddSubOperator(childCreater);
seq.AddSubOperator(replacement);
seq.AddSubOperator(solutionStorer);
seq.AddSubOperator(qualityCalculator);
seq.AddSubOperator(validationQualityCalculator);
seq.AddSubOperator(loggingOperator);
seq.AddSubOperator(counter);
seq.AddSubOperator(loopCondition);
main.OperatorGraph.AddOperator(seq);
main.OperatorGraph.InitialOperator = seq;
return main;
}
protected internal virtual IOperator CreateLoggingOperator() {
return new EmptyOperator();
}
protected internal virtual IOperator CreateLoopCondition(IOperator loop) {
SequentialProcessor seq = new SequentialProcessor();
seq.Name = "Loop Condition";
LessThanComparator comparator = new LessThanComparator();
comparator.GetVariableInfo("LeftSide").ActualName = "Generations";
comparator.GetVariableInfo("RightSide").ActualName = "MaxGenerations";
comparator.GetVariableInfo("Result").ActualName = "GenerationsCondition";
ConditionalBranch cond = new ConditionalBranch();
cond.GetVariableInfo("Condition").ActualName = "GenerationsCondition";
seq.AddSubOperator(comparator);
seq.AddSubOperator(cond);
cond.AddSubOperator(loop);
return seq;
}
protected internal virtual IOperator CreateBestSolutionProcessor() {
return new EmptyOperator();
}
protected internal virtual IOperator CreateReplacement() {
CombinedOperator replacement = new CombinedOperator();
replacement.Name = "Replacement";
SequentialProcessor seq = new SequentialProcessor();
SequentialSubScopesProcessor seqScopeProc = new SequentialSubScopesProcessor();
SequentialProcessor selectedProc = new SequentialProcessor();
LeftSelector leftSelector = new LeftSelector();
leftSelector.GetVariableInfo("Selected").ActualName = "Elites";
RightReducer rightReducer = new RightReducer();
SequentialProcessor remainingProc = new SequentialProcessor();
RightSelector rightSelector = new RightSelector();
rightSelector.GetVariableInfo("Selected").ActualName = "Elites";
LeftReducer leftReducer = new LeftReducer();
MergingReducer mergingReducer = new MergingReducer();
Sorter sorter = new Sorter();
sorter.GetVariableInfo("Descending").ActualName = "Maximization";
sorter.GetVariableInfo("Value").ActualName = "Quality";
seq.AddSubOperator(seqScopeProc);
seqScopeProc.AddSubOperator(selectedProc);
selectedProc.AddSubOperator(leftSelector);
selectedProc.AddSubOperator(rightReducer);
seqScopeProc.AddSubOperator(remainingProc);
remainingProc.AddSubOperator(rightSelector);
remainingProc.AddSubOperator(leftReducer);
seq.AddSubOperator(mergingReducer);
seq.AddSubOperator(sorter);
replacement.OperatorGraph.AddOperator(seq);
replacement.OperatorGraph.InitialOperator = seq;
return replacement;
}
protected internal virtual IOperator CreateChildCreater() {
CombinedOperator childCreater = new CombinedOperator();
childCreater.Name = "Create children";
SequentialProcessor seq = new SequentialProcessor();
OperatorExtractor selector = new OperatorExtractor();
selector.Name = "Selector (extr.)";
selector.GetVariableInfo("Operator").ActualName = "Selector";
SequentialSubScopesProcessor seqScopesProc = new SequentialSubScopesProcessor();
EmptyOperator emptyOpt = new EmptyOperator();
SequentialProcessor selectedProc = new SequentialProcessor();
ChildrenInitializer childInitializer = new ChildrenInitializer();
((IntData)childInitializer.GetVariable("ParentsPerChild").Value).Data = 2;
OperatorExtractor crossover = new OperatorExtractor();
crossover.Name = "Crossover (extr.)";
crossover.GetVariableInfo("Operator").ActualName = "Crossover";
UniformSequentialSubScopesProcessor individualProc = new UniformSequentialSubScopesProcessor();
SequentialProcessor individualSeqProc = new SequentialProcessor();
StochasticBranch cond = new StochasticBranch();
cond.GetVariableInfo("Probability").ActualName = "MutationRate";
OperatorExtractor manipulator = new OperatorExtractor();
manipulator.Name = "Manipulator (extr.)";
manipulator.GetVariableInfo("Operator").ActualName = "Manipulator";
OperatorExtractor evaluator = new OperatorExtractor();
evaluator.Name = "Evaluator (extr.)";
evaluator.GetVariableInfo("Operator").ActualName = "Evaluator";
MeanSquaredErrorEvaluator validationEvaluator = new MeanSquaredErrorEvaluator();
validationEvaluator.GetVariableInfo("MSE").ActualName = "ValidationQuality";
validationEvaluator.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart";
validationEvaluator.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd";
Counter evalCounter = new Counter();
evalCounter.GetVariableInfo("Value").ActualName = "EvaluatedSolutions";
SubScopesRemover parentRefRemover = new SubScopesRemover();
Sorter sorter = new Sorter();
sorter.GetVariableInfo("Descending").ActualName = "Maximization";
sorter.GetVariableInfo("Value").ActualName = "Quality";
seq.AddSubOperator(selector);
seq.AddSubOperator(seqScopesProc);
seqScopesProc.AddSubOperator(emptyOpt);
seqScopesProc.AddSubOperator(selectedProc);
selectedProc.AddSubOperator(childInitializer);
selectedProc.AddSubOperator(individualProc);
individualProc.AddSubOperator(individualSeqProc);
individualSeqProc.AddSubOperator(crossover);
individualSeqProc.AddSubOperator(cond);
cond.AddSubOperator(manipulator);
individualSeqProc.AddSubOperator(evaluator);
individualSeqProc.AddSubOperator(validationEvaluator);
individualSeqProc.AddSubOperator(evalCounter);
individualSeqProc.AddSubOperator(parentRefRemover);
selectedProc.AddSubOperator(sorter);
childCreater.OperatorGraph.AddOperator(seq);
childCreater.OperatorGraph.InitialOperator = seq;
return childCreater;
}
protected internal virtual Model CreateGPModel(IScope bestModelScope) {
Model model = new Model();
Dataset ds = bestModelScope.GetVariableValue("Dataset", true);
model.Data = bestModelScope.GetVariableValue("FunctionTree", false);
model.Dataset = ds;
model.TargetVariable = ds.GetVariableName(bestModelScope.GetVariableValue("TargetVariable", true).Data);
model.TrainingMeanSquaredError = bestModelScope.GetVariableValue("Quality", false).Data;
model.ValidationMeanSquaredError = bestModelScope.GetVariableValue("ValidationQuality", false).Data;
return model;
}
public override object Clone(IDictionary clonedObjects) {
AlgorithmBase clone = (AlgorithmBase)base.Clone(clonedObjects);
clonedObjects.Add(Guid, clone);
clone.engine = (SequentialEngine.SequentialEngine)Auxiliary.Clone(Engine, clonedObjects);
return clone;
}
protected VariableInjector GetVariableInjector() {
CombinedOperator co1 = (CombinedOperator)Engine.OperatorGraph.InitialOperator;
// SequentialProcessor in GP
algorithm = (SequentialProcessor)co1.OperatorGraph.InitialOperator;
return (VariableInjector)algorithm.SubOperators[2];
}
protected RandomInjector GetRandomInjector() {
CombinedOperator co1 = (CombinedOperator)Engine.OperatorGraph.InitialOperator;
// SequentialProcessor in GP
algorithm = (SequentialProcessor)co1.OperatorGraph.InitialOperator;
return (RandomInjector)algorithm.SubOperators[1];
}
}
}