#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Text; using HeuristicLab.Core; using System.Xml; using System.Diagnostics; using HeuristicLab.DataAnalysis; using HeuristicLab.Operators; using HeuristicLab.Random; using HeuristicLab.Selection; using HeuristicLab.Logging; using HeuristicLab.Data; using HeuristicLab.Operators.Programmable; using HeuristicLab.Selection.OffspringSelection; using HeuristicLab.Evolutionary; namespace HeuristicLab.GP.StructureIdentification { public class OffspringSelectionGP : StandardGP { public override string Name { get { return "OffspringSelectionGP"; } } public virtual int MaxEvaluatedSolutions { get { return GetVariableInjector().GetVariable("MaxEvaluatedSolutions").GetValue().Data; } set { GetVariableInjector().GetVariable("MaxEvaluatedSolutions").GetValue().Data = value; } } public virtual double SelectionPressureLimit { get { return GetVariableInjector().GetVariable("SelectionPressureLimit").GetValue().Data; } set { GetVariableInjector().GetVariable("SelectionPressureLimit").GetValue().Data = value; } } public virtual double ComparisonFactor { get { return GetVariableInjector().GetVariable("ComparisonFactor").GetValue().Data; } set { GetVariableInjector().GetVariable("ComparisonFactor").GetValue().Data = value; } } public virtual double SuccessRatioLimit { get { return GetVariableInjector().GetVariable("SuccessRatioLimit").GetValue().Data; } set { GetVariableInjector().GetVariable("SuccessRatioLimit").GetValue().Data = value; } } public override int MaxGenerations { get { throw new NotSupportedException(); } set { /* ignore */ } } public override int TournamentSize { get { throw new NotSupportedException(); } set { /* ignore */ } } public OffspringSelectionGP() : base() { PopulationSize = 1000; Parents = 20; MaxEvaluatedSolutions = 1000000; SelectionPressureLimit = 300; ComparisonFactor = 1.0; SuccessRatioLimit = 1.0; } protected internal override IOperator CreateGlobalInjector() { VariableInjector injector = (VariableInjector)base.CreateGlobalInjector(); injector.RemoveVariable("TournamentSize"); injector.RemoveVariable("MaxGenerations"); injector.AddVariable(new HeuristicLab.Core.Variable("MaxEvaluatedSolutions", new IntData())); injector.AddVariable(new HeuristicLab.Core.Variable("ComparisonFactor", new DoubleData())); injector.AddVariable(new HeuristicLab.Core.Variable("SelectionPressureLimit", new DoubleData())); injector.AddVariable(new HeuristicLab.Core.Variable("SuccessRatioLimit", new DoubleData())); return injector; } protected internal override IOperator CreateSelector() { CombinedOperator selector = new CombinedOperator(); selector.Name = "Selector"; SequentialProcessor seq = new SequentialProcessor(); seq.Name = "Selector"; EmptyOperator emptyOp = new EmptyOperator(); ProportionalSelector femaleSelector = new ProportionalSelector(); femaleSelector.GetVariableInfo("Selected").ActualName = "Parents"; femaleSelector.GetVariableValue("CopySelected", null, false).Data = true; RandomSelector maleSelector = new RandomSelector(); maleSelector.GetVariableInfo("Selected").ActualName = "Parents"; maleSelector.GetVariableValue("CopySelected", null, false).Data = true; SequentialSubScopesProcessor seqSubScopesProc = new SequentialSubScopesProcessor(); RightChildReducer rightChildReducer = new RightChildReducer(); SubScopesMixer mixer = new SubScopesMixer(); seqSubScopesProc.AddSubOperator(femaleSelector); seqSubScopesProc.AddSubOperator(emptyOp); seq.AddSubOperator(maleSelector); seq.AddSubOperator(seqSubScopesProc); seq.AddSubOperator(rightChildReducer); seq.AddSubOperator(mixer); selector.OperatorGraph.AddOperator(seq); selector.OperatorGraph.InitialOperator = seq; return selector; } protected internal override IOperator CreateChildCreater() { CombinedOperator childCreater = new CombinedOperator(); childCreater.Name = "Create children"; SequentialProcessor main = new SequentialProcessor(); SequentialProcessor seq = new SequentialProcessor(); SequentialProcessor offspringSelectionSeq = new SequentialProcessor(); OperatorExtractor selector = new OperatorExtractor(); selector.Name = "Selector (extr.)"; selector.GetVariableInfo("Operator").ActualName = "Selector"; SequentialSubScopesProcessor seqSubScopesProc = new SequentialSubScopesProcessor(); EmptyOperator emptyOp = new EmptyOperator(); OffspringSelector offspringSelector = new OffspringSelector(); ChildrenInitializer childInitializer = new ChildrenInitializer(); UniformSequentialSubScopesProcessor individualProc = new UniformSequentialSubScopesProcessor(); SequentialProcessor individualSeqProc = new SequentialProcessor(); OperatorExtractor crossover = new OperatorExtractor(); crossover.Name = "Crossover (extr.)"; crossover.GetVariableInfo("Operator").ActualName = "Crossover"; StochasticBranch cond = new StochasticBranch(); cond.GetVariableInfo("Probability").ActualName = "MutationRate"; OperatorExtractor manipulator = new OperatorExtractor(); manipulator.Name = "Manipulator (extr.)"; manipulator.GetVariableInfo("Operator").ActualName = "Manipulator"; OperatorExtractor evaluator = new OperatorExtractor(); evaluator.Name = "Evaluator (extr.)"; evaluator.GetVariableInfo("Operator").ActualName = "Evaluator"; Counter evalCounter = new Counter(); evalCounter.GetVariableInfo("Value").ActualName = "EvaluatedSolutions"; WeightedOffspringFitnessComparer offspringFitnessComparer = new WeightedOffspringFitnessComparer(); SubScopesRemover parentScopesRemover = new SubScopesRemover(); Sorter sorter = new Sorter(); sorter.GetVariableInfo("Descending").ActualName = "Maximization"; sorter.GetVariableInfo("Value").ActualName = "Quality"; UniformSequentialSubScopesProcessor validationEvaluator = new UniformSequentialSubScopesProcessor(); MeanSquaredErrorEvaluator validationQualityEvaluator = new MeanSquaredErrorEvaluator(); validationQualityEvaluator.Name = "ValidationMeanSquaredErrorEvaluator"; validationQualityEvaluator.GetVariableInfo("MSE").ActualName = "ValidationQuality"; validationQualityEvaluator.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart"; validationQualityEvaluator.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd"; main.AddSubOperator(seq); seq.AddSubOperator(selector); seq.AddSubOperator(seqSubScopesProc); seqSubScopesProc.AddSubOperator(emptyOp); seqSubScopesProc.AddSubOperator(offspringSelectionSeq); seq.AddSubOperator(offspringSelector); offspringSelector.AddSubOperator(seq); offspringSelectionSeq.AddSubOperator(childInitializer); offspringSelectionSeq.AddSubOperator(individualProc); offspringSelectionSeq.AddSubOperator(sorter); individualProc.AddSubOperator(individualSeqProc); individualSeqProc.AddSubOperator(crossover); individualSeqProc.AddSubOperator(cond); cond.AddSubOperator(manipulator); individualSeqProc.AddSubOperator(evaluator); individualSeqProc.AddSubOperator(evalCounter); individualSeqProc.AddSubOperator(offspringFitnessComparer); individualSeqProc.AddSubOperator(parentScopesRemover); SequentialSubScopesProcessor seqSubScopesProc2 = new SequentialSubScopesProcessor(); main.AddSubOperator(seqSubScopesProc2); seqSubScopesProc2.AddSubOperator(emptyOp); SequentialProcessor newGenProc = new SequentialProcessor(); newGenProc.AddSubOperator(sorter); newGenProc.AddSubOperator(validationEvaluator); seqSubScopesProc2.AddSubOperator(newGenProc); validationEvaluator.AddSubOperator(validationQualityEvaluator); childCreater.OperatorGraph.AddOperator(main); childCreater.OperatorGraph.InitialOperator = main; return childCreater; } protected internal override IOperator CreateLoopCondition(IOperator loop) { SequentialProcessor seq = new SequentialProcessor(); seq.Name = "Loop Condition"; LessThanComparator generationsComparator = new LessThanComparator(); generationsComparator.GetVariableInfo("LeftSide").ActualName = "EvaluatedSolutions"; generationsComparator.GetVariableInfo("RightSide").ActualName = "MaxEvaluatedSolutions"; generationsComparator.GetVariableInfo("Result").ActualName = "EvaluatedSolutionsCondition"; LessThanComparator selPresComparator = new LessThanComparator(); selPresComparator.GetVariableInfo("LeftSide").ActualName = "SelectionPressure"; selPresComparator.GetVariableInfo("RightSide").ActualName = "SelectionPressureLimit"; selPresComparator.GetVariableInfo("Result").ActualName = "SelectionPressureCondition"; ConditionalBranch generationsCond = new ConditionalBranch(); generationsCond.GetVariableInfo("Condition").ActualName = "EvaluatedSolutionsCondition"; ConditionalBranch selPresCond = new ConditionalBranch(); selPresCond.GetVariableInfo("Condition").ActualName = "SelectionPressureCondition"; seq.AddSubOperator(generationsComparator); seq.AddSubOperator(selPresComparator); seq.AddSubOperator(generationsCond); generationsCond.AddSubOperator(selPresCond); selPresCond.AddSubOperator(loop); return seq; } protected internal override IOperator CreateLoggingOperator() { CombinedOperator loggingOperator = new CombinedOperator(); loggingOperator.Name = "Logging"; SequentialProcessor seq = new SequentialProcessor(); DataCollector collector = new DataCollector(); ItemList names = collector.GetVariable("VariableNames").GetValue>(); names.Add(new StringData("BestQuality")); names.Add(new StringData("AverageQuality")); names.Add(new StringData("WorstQuality")); names.Add(new StringData("BestValidationQuality")); names.Add(new StringData("AverageValidationQuality")); names.Add(new StringData("WorstValidationQuality")); names.Add(new StringData("EvaluatedSolutions")); names.Add(new StringData("SelectionPressure")); QualityLogger qualityLogger = new QualityLogger(); QualityLogger validationQualityLogger = new QualityLogger(); validationQualityLogger.Name = "ValidationQualityLogger"; validationQualityLogger.GetVariableInfo("Quality").ActualName = "ValidationQuality"; validationQualityLogger.GetVariableInfo("QualityLog").ActualName = "ValidationQualityLog"; seq.AddSubOperator(collector); seq.AddSubOperator(qualityLogger); seq.AddSubOperator(validationQualityLogger); loggingOperator.OperatorGraph.AddOperator(seq); loggingOperator.OperatorGraph.InitialOperator = seq; return loggingOperator; } public override IEditor CreateEditor() { return new OffspringSelectionGpEditor(this); } public override IView CreateView() { return new OffspringSelectionGpEditor(this); } public override object Clone(IDictionary clonedObjects) { OffspringSelectionGP clone = (OffspringSelectionGP)base.Clone(clonedObjects); clone.SelectionPressureLimit = SelectionPressureLimit; clone.SuccessRatioLimit = SuccessRatioLimit; clone.ComparisonFactor = ComparisonFactor; return clone; } } }