#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Text; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.GP.StructureIdentification; namespace HeuristicLab.GP.StructureIdentification.Classification { public class ConfusionMatrixEvaluator : GPClassificationEvaluatorBase { public override string Description { get { return @"Calculates the classifcation matrix of the model."; } } public ConfusionMatrixEvaluator() : base() { AddVariableInfo(new VariableInfo("ConfusionMatrix", "The confusion matrix of the model", typeof(IntMatrixData), VariableKind.New)); } public override void Evaluate(IScope scope, ITreeEvaluator evaluator, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, double[] classes, double[] thresholds, int start, int end) { IntMatrixData matrix = GetVariableValue("ConfusionMatrix", scope, false, false); if (matrix == null) { matrix = new IntMatrixData(new int[classes.Length, classes.Length]); scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("ConfusionMatrix"), matrix)); } int nSamples = end - start; for (int sample = start; sample < end; sample++) { double est = evaluator.Evaluate(sample); double origClass = dataset.GetValue(sample, targetVariable); int estClassIndex = -1; // if estimation is lower than the smallest threshold value -> estimated class is the lower class if (est < thresholds[0]) estClassIndex = 0; // if estimation is larger (or equal) than the largest threshold value -> estimated class is the upper class else if (est >= thresholds[thresholds.Length - 1]) estClassIndex = classes.Length - 1; else { // otherwise the estimated class is the class which upper threshold is larger than the estimated value for (int k = 0; k < thresholds.Length; k++) { if (thresholds[k] > est) { estClassIndex = k; break; } } } // find the first threshold index that is larger to the original value int origClassIndex = classes.Length - 1; for (int i = 0; i < thresholds.Length; i++) { if (origClass < thresholds[i]) { origClassIndex = i; break; } } matrix.Data[origClassIndex, estClassIndex]++; } } } }