#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using System.Linq;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Permutation;
using HeuristicLab.Evolutionary;
using HeuristicLab.Operators;
using HeuristicLab.Routing.TSP;
using HeuristicLab.Logging;
using System.Diagnostics;
using HeuristicLab.Selection;
using System.Threading;
using System.IO;
using HeuristicLab.Random;
namespace HeuristicLab.FixedOperators {
class FixedSGAMain : FixedOperatorBase {
public override string Description {
get { return @"Implements the functionality of SGAMain with fixed control structures. Operators like selection, crossover, mutation and evaluation are delegated."; }
}
// Shared
protected Sorter sorter;
// CreateChildren
protected Counter counter;
protected IRandom random;
protected DoubleData probability;
protected ChildrenInitializer ci;
protected OperatorBase crossover;
protected OperatorBase mutator;
protected OperatorBase evaluator;
protected SubScopesRemover sr;
protected StochasticBranch sb;
protected OperatorBase selector;
// CreateReplacement
protected LeftSelector ls;
protected RightReducer rr;
protected RightSelector rs;
protected LeftReducer lr;
protected MergingReducer mr;
//long[] timesExecuteCreateChildren;
public FixedSGAMain()
: base() {
AddVariableInfo(new VariableInfo("Selector", "Selection strategy for SGA", typeof(OperatorBase), VariableKind.In));
AddVariableInfo(new VariableInfo("MaximumGenerations", "Maximum number of generations to create", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("Generations", "Number of processed generations", typeof(IntData), VariableKind.In | VariableKind.Out));
Name = "FixedSGAMain";
sorter = new Sorter();
sorter.GetVariableInfo("Descending").ActualName = "Maximization";
sorter.GetVariableInfo("Value").ActualName = "Quality";
InitCreateChildren();
InitReplacement();
sb = new StochasticBranch();
sb.GetVariableInfo("Probability").ActualName = "MutationRate";
}
private void InitReplacement() {
ls = new LeftSelector();
rr = new RightReducer();
rs = new RightSelector();
lr = new LeftReducer();
mr = new MergingReducer();
ls.GetVariableInfo("Selected").ActualName = "Elites";
rs.GetVariableInfo("Selected").ActualName = "Elites";
}
private void InitCreateChildren() {
// variables for create children
ci = new ChildrenInitializer();
// variables infos
AddVariableInfo(new VariableInfo("Random", "Pseudo random number generator", typeof(IRandom), VariableKind.In));
AddVariableInfo(new VariableInfo("MutationRate", "Probability to choose first branch", typeof(DoubleData), VariableKind.In));
AddVariableInfo(new VariableInfo("Crossover", "Crossover strategy for SGA", typeof(OperatorBase), VariableKind.In));
AddVariableInfo(new VariableInfo("Mutator", "Mutation strategy for SGA", typeof(OperatorBase), VariableKind.In));
AddVariableInfo(new VariableInfo("Evaluator", "Evaluation strategy for SGA", typeof(OperatorBase), VariableKind.In));
sr = new SubScopesRemover();
sr.GetVariableInfo("SubScopeIndex").Local = true;
counter = new Counter();
counter.GetVariableInfo("Value").ActualName = "EvaluatedSolutions";
}
public override IOperation Apply(IScope scope) {
base.Apply(scope);
Stopwatch swApply = new Stopwatch();
swApply.Start();
#region Initialization
QualityLogger ql = new QualityLogger();
BestAverageWorstQualityCalculator bawqc = new BestAverageWorstQualityCalculator();
DataCollector dc = new DataCollector();
ItemList names = dc.GetVariable("VariableNames").GetValue>();
names.Add(new StringData("BestQuality"));
names.Add(new StringData("AverageQuality"));
names.Add(new StringData("WorstQuality"));
LinechartInjector lci = new LinechartInjector();
lci.GetVariableInfo("Linechart").ActualName = "Quality Linechart";
lci.GetVariable("NumberOfLines").GetValue().Data = 3;
IntData maxGenerations = GetVariableValue("MaximumGenerations", scope, true);
IntData nrOfGenerations = GetVariableValue("Generations", scope, true);
IntData subscopeNr;
try {
subscopeNr = scope.GetVariableValue("SubScopeNr", false);
}
catch (Exception) {
subscopeNr = new IntData(0);
scope.AddVariable(new Variable("SubScopeNr", subscopeNr));
}
ci = new ChildrenInitializer();
GetOperatorsFromScope(scope);
try {
sb.RemoveSubOperator(0);
}
catch (Exception) {
}
sb.AddSubOperator(mutator);
IScope s;
IScope s2;
#endregion
try {
for (; nrOfGenerations.Data < maxGenerations.Data; nrOfGenerations.Data++) {
Execute(selector, scope);
////// Create Children //////
// ChildrenInitializer
s = scope.SubScopes[1];
Execute(ci, s);
SaveExecutionPointer();
// UniformSequentialSubScopesProcessor
for (; subscopeNr.Data < s.SubScopes.Count; subscopeNr.Data++) {
SetExecutionPointerToLastSaved();
s2 = s.SubScopes[subscopeNr.Data];
Execute(crossover, s2);
// Stochastic Branch
Execute(sb, s2);
// ganz böse!!!!!!!
// wird nach dem stochastic branch angehalten und später fortgesetzt,
// wird eine Zufallszahl erzeugt, die aber nicht verwendet wird.
// Dadurch kommt der GA auf ein anderes Endergebnis
// Lösung: Stochastic Branch Operator verwenden
//randomNumber = random.NextDouble();
//output.AppendLine(randomNumber.ToString());
//if (randomNumber < probability.Data)
// Execute(mutator, s2);
//else
// Execute(empty, s2);
Execute(evaluator, s2);
Execute(sr, s2);
Execute(counter, s2);
} // foreach
Execute(sorter, s);
////// END Create Children //////
DoReplacement(scope);
Execute(ql, scope);
Execute(bawqc, scope);
Execute(dc, scope);
Execute(lci, scope);
subscopeNr.Data = 0;
ResetExecutionPointer();
} // for i
//TextWriter tw = new StreamWriter(DateTime.Now.ToFileTime() + ".txt");
//tw.Write(output.ToString());
//tw.Close();
//output = new StringBuilder();
swApply.Stop();
Console.WriteLine("SGAMain.Apply(): {0}", swApply.Elapsed);
} // try
catch (CancelException) {
Console.WriteLine("Micro engine aborted by cancel flag.");
return new AtomicOperation(this, scope);
}
return null;
} // Apply
///
/// Fetch main operators like selector, crossover, mutator, ... from scope
/// and store them in instance variables.
///
///
protected void GetOperatorsFromScope(IScope scope) {
selector = (OperatorBase)GetVariableValue("Selector", scope, true);
crossover = (OperatorBase)GetVariableValue("Crossover", scope, true);
mutator = (OperatorBase)GetVariableValue("Mutator", scope, true);
evaluator = GetVariableValue("Evaluator", scope, true);
random = GetVariableValue("Random", scope, true);
probability = GetVariableValue("MutationRate", scope, true);
}
///
///
///
///
protected void CreateChildren(IScope scope) {
// ChildrenInitializer
Execute(ci, scope);
// UniformSequentialSubScopesProcessor
foreach (IScope s in scope.SubScopes) {
Execute(crossover, s);
// Stochastic Branch
if (random.NextDouble() < probability.Data)
Execute(mutator, s);
Execute(evaluator, s);
Execute(sr, s);
Execute(counter, s);
} // foreach
Execute(sorter, scope);
} // CreateChildren
protected void DoReplacement(IScope scope) {
//// SequentialSubScopesProcessor
Execute(ls, scope.SubScopes[0]);
Execute(rr, scope.SubScopes[0]);
Execute(rs, scope.SubScopes[1]);
Execute(lr, scope.SubScopes[1]);
Execute(mr, scope);
Execute(sorter, scope);
} // DoReplacement
} // class FixedSGAMain
} // namespace HeuristicLab.FixedOperators