#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Text; using System.Windows.Forms; using HeuristicLab.PluginInfrastructure; using System.Net; using System.ServiceModel; using HeuristicLab.CEDMA.DB.Interfaces; using HeuristicLab.CEDMA.DB; using System.ServiceModel.Description; using System.Linq; using HeuristicLab.CEDMA.Core; using HeuristicLab.GP.StructureIdentification; using HeuristicLab.Data; using HeuristicLab.Core; using HeuristicLab.Modeling; namespace HeuristicLab.CEDMA.Server { public abstract class DispatcherBase : IDispatcher { private IStore store; private DataSet dataset; internal event EventHandler Changed; public IEnumerable AllowedTargetVariables { get { if (dataset != null) { return dataset.Problem.AllowedTargetVariables.Select(x => dataset.Problem.Dataset.GetVariableName(x)); } else return new string[0]; } } public IEnumerable AllowedInputVariables { get { if (dataset != null) { return dataset.Problem.AllowedInputVariables.Select(x => dataset.Problem.Dataset.GetVariableName(x)); } else return new string[0]; } } public DispatcherBase(IStore store) { this.store = store; } public IAlgorithm GetNextJob() { if (dataset == null) { var datasetEntities = store.Query("?DataSet <" + Ontology.InstanceOf.Uri + "> <" + Ontology.TypeDataSet.Uri + "> .", 0, 1) .Select(x => (Entity)x.Get("DataSet")); if (datasetEntities.Count() == 0) return null; dataset = new DataSet(store, datasetEntities.ElementAt(0)); OnChanged(); } int targetVariable = SelectTargetVariable(dataset.Problem.AllowedTargetVariables.ToArray()); IAlgorithm selectedAlgorithm = SelectAlgorithm(targetVariable, dataset.Problem.LearningTask); string targetVariableName = dataset.Problem.GetVariableName(targetVariable); if (selectedAlgorithm != null) { SetProblemParameters(selectedAlgorithm, dataset.Problem, targetVariable); } return selectedAlgorithm; } public abstract int SelectTargetVariable(int[] targetVariables); public abstract IAlgorithm SelectAlgorithm(int targetVariable, LearningTask learningTask); private void SetProblemParameters(IAlgorithm algo, Problem problem, int targetVariable) { algo.Dataset = problem.Dataset; algo.TargetVariable = targetVariable; algo.ProblemInjector.GetVariable("TrainingSamplesStart").GetValue().Data = problem.TrainingSamplesStart; algo.ProblemInjector.GetVariable("TrainingSamplesEnd").GetValue().Data = problem.TrainingSamplesEnd; algo.ProblemInjector.GetVariable("ValidationSamplesStart").GetValue().Data = problem.ValidationSamplesStart; algo.ProblemInjector.GetVariable("ValidationSamplesEnd").GetValue().Data = problem.ValidationSamplesEnd; algo.ProblemInjector.GetVariable("TestSamplesStart").GetValue().Data = problem.TestSamplesStart; algo.ProblemInjector.GetVariable("TestSamplesEnd").GetValue().Data = problem.TestSamplesEnd; ItemList allowedFeatures = algo.ProblemInjector.GetVariable("AllowedFeatures").GetValue>(); foreach (int allowedFeature in problem.AllowedInputVariables) allowedFeatures.Add(new IntData(allowedFeature)); if (problem.LearningTask == LearningTask.TimeSeries) { algo.ProblemInjector.GetVariable("Autoregressive").GetValue().Data = problem.AutoRegressive; algo.ProblemInjector.GetVariable("MinTimeOffset").GetValue().Data = problem.MinTimeOffset; algo.ProblemInjector.GetVariable("MaxTimeOffset").GetValue().Data = problem.MaxTimeOffset; } else if (problem.LearningTask == LearningTask.Classification) { ItemList classValues = algo.ProblemInjector.GetVariable("TargetClassValues").GetValue>(); foreach (double classValue in GetDifferentClassValues(problem.Dataset, targetVariable)) classValues.Add(new DoubleData(classValue)); } } private IEnumerable GetDifferentClassValues(HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable) { return Enumerable.Range(0, dataset.Rows).Select(x => dataset.GetValue(x, targetVariable)).Distinct(); } private void OnChanged() { if (Changed != null) Changed(this, new EventArgs()); } #region IViewable Members public IView CreateView() { return new DispatcherView(this); } #endregion } }