#region License Information
/* HeuristicLab
* Copyright (C) 2002-2009 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Core;
using HeuristicLab.Data;
namespace HeuristicLab.SimOpt {
public class SimOptSelfAdaptiveNumericVectorProbabilityMutation : OperatorBase {
public override string Description {
get { return @"Takes the values of a strategy vectors as possibilities to manipulate a certain dimension in the parameter vector"; }
}
public SimOptSelfAdaptiveNumericVectorProbabilityMutation()
: base() {
AddVariableInfo(new VariableInfo("Random", "The random number generator", typeof(IRandom), VariableKind.In));
AddVariableInfo(new VariableInfo("Probabilities", "The probability vector", typeof(DoubleArrayData), VariableKind.In));
AddVariableInfo(new VariableInfo("Items", "The parameter vector", typeof(ConstrainedItemList), VariableKind.In | VariableKind.Out));
AddVariableInfo(new VariableInfo("MaxVector", "Vector containing the maximum values", typeof(DoubleArrayData), VariableKind.In));
AddVariableInfo(new VariableInfo("MinVector", "Vector containing the minimum values", typeof(DoubleArrayData), VariableKind.In));
}
public override IOperation Apply(IScope scope) {
IRandom random = GetVariableValue("Random", scope, true);
DoubleArrayData max = GetVariableValue("MaxVector", scope, true);
DoubleArrayData min = GetVariableValue("MinVector", scope, true);
DoubleArrayData probs = GetVariableValue("Probabilities", scope, false);
ConstrainedItemList parameters = GetVariableValue("Items", scope, false);
int tries;
ConstrainedItemList temp = null;
ICollection tmp;
for (tries = 0; tries < 100; tries++) {
temp = (ConstrainedItemList)parameters.Clone();
temp.BeginCombinedOperation();
for (int i = 0; i < temp.Count; i++) {
if (random.NextDouble() < probs.Data[i % probs.Data.Length]) {
if (((Variable)temp[i]).Value is IntData) {
((IntData)((Variable)temp[i]).Value).Data = random.Next((int)Math.Floor(min.Data[i % min.Data.Length]), (int)Math.Ceiling(max.Data[i % max.Data.Length]));
} else if (((Variable)temp[i]).Value is DoubleData) {
((DoubleData)((Variable)temp[i]).Value).Data = min.Data[i] + (max.Data[i % max.Data.Length] - min.Data[i % min.Data.Length]) * random.NextDouble();
} else if (((Variable)temp[i]).Value is ConstrainedIntData) {
((ConstrainedIntData)((Variable)temp[i]).Value).TrySetData(random.Next((int)Math.Floor(min.Data[i % min.Data.Length]), (int)Math.Ceiling(max.Data[i % max.Data.Length])));
} else if (((Variable)temp[i]).Value is ConstrainedDoubleData) {
((ConstrainedDoubleData)((Variable)temp[i]).Value).TrySetData(min.Data[i % min.Data.Length] + (max.Data[i % max.Data.Length] - min.Data[i % min.Data.Length]) * random.NextDouble());
}
}
}
if (temp.EndCombinedOperation(out tmp)) break;
}
if (tries < 100) {
parameters.BeginCombinedOperation();
for (int i = 0; i < temp.Count; i++)
parameters.TrySetAt(i, temp[i], out tmp);
parameters.EndCombinedOperation(out tmp);
} else throw new InvalidOperationException("ERROR in SimOptSelfAdaptiveNumericVectorProbabilityMutation: no feasible result in 100 tries");
return null;
}
}
}