#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Core;
using System.Xml;
using System.Diagnostics;
using HeuristicLab.DataAnalysis;
namespace HeuristicLab.GP.StructureIdentification {
///
/// Evaluates FunctionTrees recursively by interpretation of the function symbols in each node.
/// Not thread-safe!
///
public class HL2TreeEvaluator : ItemBase, ITreeEvaluator {
private const double EPSILON = 1.0e-10;
private double estimatedValueMax;
private double estimatedValueMin;
private class Instr {
public double d_arg0;
public short i_arg0;
public short i_arg1;
public byte arity;
public byte symbol;
public IFunction function;
}
private Instr[] codeArr;
private int PC;
private Dataset dataset;
private int sampleIndex;
public void ResetEvaluator(Dataset dataset, int targetVariable, int start, int end, double punishmentFactor) {
this.dataset = dataset;
double maximumPunishment = punishmentFactor * dataset.GetRange(targetVariable, start, end);
// get the mean of the values of the target variable to determine the max and min bounds of the estimated value
double targetMean = dataset.GetMean(targetVariable, start, end);
estimatedValueMin = targetMean - maximumPunishment;
estimatedValueMax = targetMean + maximumPunishment;
}
private Instr TranslateToInstr(LightWeightFunction f) {
Instr instr = new Instr();
instr.arity = f.arity;
instr.symbol = EvaluatorSymbolTable.MapFunction(f.functionType);
switch (instr.symbol) {
case EvaluatorSymbolTable.DIFFERENTIAL:
case EvaluatorSymbolTable.VARIABLE: {
instr.i_arg0 = (short)f.data[0]; // var
instr.d_arg0 = f.data[1]; // weight
instr.i_arg1 = (short)f.data[2]; // sample-offset
break;
}
case EvaluatorSymbolTable.CONSTANT: {
instr.d_arg0 = f.data[0]; // value
break;
}
case EvaluatorSymbolTable.UNKNOWN: {
instr.function = f.functionType;
break;
}
}
return instr;
}
public double Evaluate(IFunctionTree functionTree, int sampleIndex) {
BakedFunctionTree bakedTree = functionTree as BakedFunctionTree;
if (bakedTree == null) throw new ArgumentException("HL2Evaluator can only evaluate BakedFunctionTrees");
List linearRepresentation = bakedTree.LinearRepresentation;
codeArr = new Instr[linearRepresentation.Count];
int i = 0;
foreach (LightWeightFunction f in linearRepresentation) {
codeArr[i++] = TranslateToInstr(f);
}
PC = 0;
this.sampleIndex = sampleIndex;
double estimated = EvaluateBakedCode();
if (double.IsNaN(estimated) || double.IsInfinity(estimated)) {
estimated = estimatedValueMax;
} else if (estimated > estimatedValueMax) {
estimated = estimatedValueMax;
} else if (estimated < estimatedValueMin) {
estimated = estimatedValueMin;
}
return estimated;
}
// skips a whole branch
private void SkipBakedCode() {
int i = 1;
while (i > 0) {
i += codeArr[PC++].arity;
i--;
}
}
private double EvaluateBakedCode() {
Instr currInstr = codeArr[PC++];
switch (currInstr.symbol) {
case EvaluatorSymbolTable.VARIABLE: {
int row = sampleIndex + currInstr.i_arg1;
if (row < 0 || row >= dataset.Rows) return double.NaN;
else return currInstr.d_arg0 * dataset.GetValue(row, currInstr.i_arg0);
}
case EvaluatorSymbolTable.CONSTANT: {
return currInstr.d_arg0;
}
case EvaluatorSymbolTable.DIFFERENTIAL: {
int row = sampleIndex + currInstr.i_arg1;
if (row < 1 || row >= dataset.Rows) return double.NaN;
else {
double prevValue = dataset.GetValue(row - 1, currInstr.i_arg0);
return currInstr.d_arg0 * (dataset.GetValue(row, currInstr.i_arg0) - prevValue);
}
}
case EvaluatorSymbolTable.MULTIPLICATION: {
double result = EvaluateBakedCode();
for (int i = 1; i < currInstr.arity; i++) {
result *= EvaluateBakedCode();
}
return result;
}
case EvaluatorSymbolTable.ADDITION: {
double sum = EvaluateBakedCode();
for (int i = 1; i < currInstr.arity; i++) {
sum += EvaluateBakedCode();
}
return sum;
}
case EvaluatorSymbolTable.SUBTRACTION: {
return EvaluateBakedCode() - EvaluateBakedCode();
}
case EvaluatorSymbolTable.DIVISION: {
double arg0 = EvaluateBakedCode();
double arg1 = EvaluateBakedCode();
if (double.IsNaN(arg0) || double.IsNaN(arg1)) return double.NaN;
if (Math.Abs(arg1) < (10e-20)) return 0.0; else return (arg0 / arg1);
}
case EvaluatorSymbolTable.COSINUS: {
return Math.Cos(EvaluateBakedCode());
}
case EvaluatorSymbolTable.SINUS: {
return Math.Sin(EvaluateBakedCode());
}
case EvaluatorSymbolTable.EXP: {
return Math.Exp(EvaluateBakedCode());
}
case EvaluatorSymbolTable.LOG: {
return Math.Log(EvaluateBakedCode());
}
case EvaluatorSymbolTable.POWER: {
double x = EvaluateBakedCode();
double p = EvaluateBakedCode();
return Math.Pow(x, p);
}
case EvaluatorSymbolTable.SIGNUM: {
double value = EvaluateBakedCode();
if (double.IsNaN(value)) return double.NaN;
if (value < 0.0) return -1.0;
if (value > 0.0) return 1.0;
return 0.0;
}
case EvaluatorSymbolTable.SQRT: {
return Math.Sqrt(EvaluateBakedCode());
}
case EvaluatorSymbolTable.TANGENS: {
return Math.Tan(EvaluateBakedCode());
}
case EvaluatorSymbolTable.AND: { // only defined for inputs 1 and 0
double result = EvaluateBakedCode();
bool hasNaNBranch = false;
for (int i = 1; i < currInstr.arity; i++) {
if (result < 0.5 || double.IsNaN(result)) hasNaNBranch |= double.IsNaN(EvaluateBakedCode());
else {
result = EvaluateBakedCode();
}
}
if (hasNaNBranch || double.IsNaN(result)) return double.NaN;
if (result < 0.5) return 0.0;
return 1.0;
}
case EvaluatorSymbolTable.EQU: {
double x = EvaluateBakedCode();
double y = EvaluateBakedCode();
if (double.IsNaN(x) || double.IsNaN(y)) return double.NaN;
// direct comparison of double values is most likely incorrect but
// that's the way how it is implemented in the standard HL2 function library
if (x == y) return 1.0; else return 0.0;
}
case EvaluatorSymbolTable.GT: {
double x = EvaluateBakedCode();
double y = EvaluateBakedCode();
if (double.IsNaN(x) || double.IsNaN(y)) return double.NaN;
if (x > y) return 1.0;
return 0.0;
}
case EvaluatorSymbolTable.IFTE: { // only defined for condition 0 or 1
double condition = EvaluateBakedCode();
double result;
bool hasNaNBranch = false;
if (double.IsNaN(condition)) return double.NaN;
if (condition > 0.5) {
result = EvaluateBakedCode(); hasNaNBranch = double.IsNaN(EvaluateBakedCode());
} else {
hasNaNBranch = double.IsNaN(EvaluateBakedCode()); result = EvaluateBakedCode();
}
if (hasNaNBranch) return double.NaN;
return result;
}
case EvaluatorSymbolTable.LT: {
double x = EvaluateBakedCode();
double y = EvaluateBakedCode();
if (double.IsNaN(x) || double.IsNaN(y)) return double.NaN;
if (x < y) return 1.0;
return 0.0;
}
case EvaluatorSymbolTable.NOT: { // only defined for inputs 0 or 1
double result = EvaluateBakedCode();
if (double.IsNaN(result)) return double.NaN;
if (result < 0.5) return 1.0;
return 0.0;
}
case EvaluatorSymbolTable.OR: { // only defined for inputs 0 or 1
double result = EvaluateBakedCode();
bool hasNaNBranch = false;
for (int i = 1; i < currInstr.arity; i++) {
if (double.IsNaN(result) || result > 0.5) hasNaNBranch |= double.IsNaN(EvaluateBakedCode());
else
result = EvaluateBakedCode();
}
if (hasNaNBranch || double.IsNaN(result)) return double.NaN;
if (result > 0.5) return 1.0;
return 0.0;
}
default: {
throw new NotImplementedException();
}
}
}
}
}