#region License Information /* HeuristicLab * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Selection { /// /// A quality proportional selection operator which considers a single double quality value for selection. /// [Item("ProportionalSelector", "A quality proportional selection operator which considers a single double quality value for selection.")] [StorableClass] public sealed class ProportionalSelector : StochasticSingleObjectiveSelector, ISingleObjectiveSelector { private ValueParameter WindowingParameter { get { return (ValueParameter)Parameters["Windowing"]; } } public BoolValue Windowing { get { return WindowingParameter.Value; } set { WindowingParameter.Value = value; } } [StorableConstructor] private ProportionalSelector(bool deserializing) : base(deserializing) { } private ProportionalSelector(ProportionalSelector original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new ProportionalSelector(this, cloner); } public ProportionalSelector() : base() { Parameters.Add(new ValueParameter("Windowing", "Apply windowing strategy (selection probability is proportional to the quality differences and not to the total quality).", new BoolValue(true))); } protected override IScope[] Select(List scopes) { int count = NumberOfSelectedSubScopesParameter.ActualValue.Value; bool copy = CopySelectedParameter.Value.Value; IRandom random = RandomParameter.ActualValue; bool maximization = MaximizationParameter.ActualValue.Value; bool windowing = WindowingParameter.Value.Value; IScope[] selected = new IScope[count]; // prepare qualities for proportional selection var qualities = QualityParameter.ActualValue.Select(x => x.Value); double minQuality = double.MaxValue; double maxQuality = double.MinValue; foreach (var quality in qualities) { if (!IsValidQuality(quality)) throw new ArgumentException("The scopes contain invalid quality values (either infinity or double.NaN) on which the selector cannot operate."); if (quality < minQuality) minQuality = quality; if (quality > maxQuality) maxQuality = quality; } if (minQuality == maxQuality) { // all quality values are equal qualities = qualities.Select(x => 1.0); } else { if (windowing) { if (maximization) qualities = qualities.Select(x => x - minQuality); else qualities = qualities.Select(x => maxQuality - x); } else { if (minQuality < 0.0) throw new InvalidOperationException("Proportional selection without windowing does not work with quality values < 0."); if (!maximization) { double limit = Math.Min(maxQuality * 2, double.MaxValue); qualities = qualities.Select(x => limit - x); } } } List list = qualities.ToList(); double qualitySum = list.Sum(); for (int i = 0; i < count; i++) { double selectedQuality = random.NextDouble() * qualitySum; int index = 0; double currentQuality = list[index]; while (currentQuality < selectedQuality) { index++; currentQuality += list[index]; } if (copy) { selected[i] = (IScope)scopes[index].Clone(); var original = scopes[index].Variables.First().Value; var clone = selected[i].Variables.First().Value; GlobalCloneMap.Add(clone, original); } else { selected[i] = scopes[index]; scopes.RemoveAt(index); qualitySum -= list[index]; list.RemoveAt(index); } } return selected; } } }