#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
[StorableClass]
public class SymbolicDataAnalysisExpressionTreeSimilarityCalculator : SingleSuccessorOperator {
private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
private const string CurrentSymbolicExpressionTreeParameterName = "CurrentSymbolicExpressionTree";
private const string SimilarityValuesParmeterName = "Similarity";
// comparer parameters
private const string MatchVariablesParameterName = "MatchVariableNames";
private const string MatchVariableWeightsParameterName = "MatchVariableWeights";
private const string MatchConstantValuesParameterName = "MatchConstantValues";
public IScopeTreeLookupParameter SymbolicExpressionTreeParameter {
get { return (IScopeTreeLookupParameter)Parameters[SymbolicExpressionTreeParameterName]; }
}
public IValueParameter CurrentSymbolicExpressionTreeParameter {
get { return (IValueParameter)Parameters[CurrentSymbolicExpressionTreeParameterName]; }
}
public ILookupParameter MatchVariableNamesParameter {
get { return (ILookupParameter)Parameters[MatchVariablesParameterName]; }
}
public ILookupParameter MatchVariableWeightsParameter {
get { return (ILookupParameter)Parameters[MatchVariableWeightsParameterName]; }
}
public ILookupParameter MatchConstantValuesParameter {
get { return (ILookupParameter)Parameters[MatchConstantValuesParameterName]; }
}
public ILookupParameter SimilarityParameter {
get { return (ILookupParameter)Parameters[SimilarityValuesParmeterName]; }
}
public ISymbolicExpressionTree CurrentSymbolicExpressionTree {
get { return CurrentSymbolicExpressionTreeParameter.Value; }
set { CurrentSymbolicExpressionTreeParameter.Value = value; }
}
public SymbolicExpressionTreeNodeSimilarityComparer SimilarityComparer { get; set; }
public Dictionary GeneticItems;
public int MaximumTreeDepth { get; set; }
protected SymbolicDataAnalysisExpressionTreeSimilarityCalculator(SymbolicDataAnalysisExpressionTreeSimilarityCalculator original, Cloner cloner) : base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicDataAnalysisExpressionTreeSimilarityCalculator(this, cloner); }
[StorableConstructor]
protected SymbolicDataAnalysisExpressionTreeSimilarityCalculator(bool deserializing) : base(deserializing) { }
public SymbolicDataAnalysisExpressionTreeSimilarityCalculator()
: base() {
Parameters.Add(new ScopeTreeLookupParameter(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
Parameters.Add(new ValueParameter(CurrentSymbolicExpressionTreeParameterName, ""));
Parameters.Add(new LookupParameter(MatchVariablesParameterName, "Specify if the symbolic expression tree comparer should match variable names."));
Parameters.Add(new LookupParameter(MatchVariableWeightsParameterName, "Specify if the symbolic expression tree comparer should match variable weights."));
Parameters.Add(new LookupParameter(MatchConstantValuesParameterName, "Specify if the symbolic expression tree comparer should match constant values."));
Parameters.Add(new LookupParameter(SimilarityValuesParmeterName, ""));
}
public override IOperation Apply() {
var trees = SymbolicExpressionTreeParameter.ActualValue;
double similarity = 0.0;
var current = CurrentSymbolicExpressionTree;
bool found = false;
foreach (var tree in trees) {
if (tree == current) {
found = true;
continue;
}
if (found) {
similarity += SymbolicDataAnalysisExpressionTreeSimilarity.MaxCommonSubtreeSimilarity(current, tree, SimilarityComparer);
// similarity += SymbolicDataAnalysisExpressionTreeSimilarity.GeneticItemSimilarity(GeneticItems[current], GeneticItems[tree], MaximumTreeDepth);
}
}
lock (SimilarityParameter.ActualValue) {
SimilarityParameter.ActualValue.Value += similarity;
}
return base.Apply();
}
}
public static class SymbolicDataAnalysisExpressionTreeSimilarity {
private static double CalculateSimilarity(ISymbolicExpressionTreeNode a, ISymbolicExpressionTreeNode b, SymbolicExpressionTreeNodeSimilarityComparer comp) {
return 2.0 * SymbolicExpressionTreeMatching.Match(a, b, comp) / (a.GetLength() + b.GetLength());
}
public static double MaxCommonSubtreeSimilarity(ISymbolicExpressionTree a, ISymbolicExpressionTree b, SymbolicExpressionTreeNodeSimilarityComparer comparer) {
double max = 0;
var rootA = a.Root.GetSubtree(0).GetSubtree(0);
var rootB = b.Root.GetSubtree(0).GetSubtree(0);
foreach (var aa in rootA.IterateNodesBreadth()) {
int lenA = aa.GetLength();
if (lenA <= max) continue;
foreach (var bb in rootB.IterateNodesBreadth()) {
int lenB = bb.GetLength();
if (lenB <= max) continue;
int matches = SymbolicExpressionTreeMatching.Match(aa, bb, comparer);
if (max < matches) max = matches;
}
}
return 2.0 * max / (rootA.GetLength() + rootB.GetLength());
}
public static double GeneticItemSimilarity(ISymbolicExpressionTree a, ISymbolicExpressionTree b, int maximumTreeHeight, bool preventMultipleContribution = true) {
const int minLevelDelta = 1;
const int maxLevelDelta = 4;
var itemsA = a.GetGeneticItems(minLevelDelta, maxLevelDelta).ToArray();
var itemsB = b.GetGeneticItems(minLevelDelta, maxLevelDelta).ToArray();
return GeneticItemSimilarity(itemsA, itemsB, maximumTreeHeight);
}
public static double GeneticItemSimilarity(GeneticItem[] itemsA, GeneticItem[] itemsB, int maximumTreeHeight, bool preventMultipleContribution = true) {
double similarity = 0.0;
if (itemsA.Length == 0 || itemsB.Length == 0) return similarity;
var flagsB = new bool[itemsB.Length];
for (int i = 0; i != itemsA.Length; ++i) {
double simMax = 0.0;
int index = -1;
for (int j = 0; j != itemsB.Length; ++j) {
if (flagsB[j]) continue;
double sim = StructuralSimilarity(itemsA[i], itemsB[j], maximumTreeHeight);
if (sim > simMax) {
simMax = sim;
index = j;
}
if (preventMultipleContribution && index > -1) {
flagsB[index] = true;
}
}
similarity += simMax;
}
return similarity / itemsA.Length;
}
public static double AdditiveSimilarity(ISymbolicExpressionTree a, ISymbolicExpressionTree b, SymbolicExpressionTreeNodeSimilarityComparer comparer) {
var nA = a.Root.GetSubtree(0).GetSubtree(0);
var nB = b.Root.GetSubtree(0).GetSubtree(0);
var nodesA = nA.IterateNodesBreadth().ToArray();
var nodesB = nB.IterateNodesBreadth().ToArray();
var similarities = nodesA.SelectMany(ia => nodesB, (ia, ib) => CalculateSimilarity(ia, ib, comparer)).Where(s => !s.IsAlmost(0.0)).ToList();
double average = similarities.Count > 0 ? similarities.Average() : 0;
if (average > 1.0) throw new Exception("Similarity average should be less than 1.0");
if (average < 0.0) throw new Exception("Similarity average should be greater than 0.0");
return average;
}
private static double StructuralSimilarity(GeneticItem g1, GeneticItem g2, int heightMax) {
if (!(SameType(g1.Ascendant, g2.Ascendant) && SameType(g1.Descendant, g2.Descendant))) return 0.0;
double s1 = 1.0 - Math.Abs(g1.LevelDelta - g2.LevelDelta) / heightMax;
double s2 = g1.Index == g2.Index ? 1.0 : 0.0;
double s3 = g1.ParamA.Variant.Name.Equals(g2.ParamA.Variant.Name) ? 1.0 : 0.0;
double s4 = g1.ParamB.Variant.Name.Equals(g2.ParamB.Variant.Name) ? 1.0 : 0.0;
double deltaCa = Math.Abs(g1.ParamA.Coeff - g2.ParamA.Coeff);
double deltaCb = Math.Abs(g1.ParamB.Coeff - g2.ParamB.Coeff);
double s5 = 0.0;
double s6 = 0.0;
// no time offsets so we hardcode s7 = s8 = 0.0
double s7 = 0.0;
double s8 = 0.0;
// variable indexes
double s9 = 0.0;
double s10 = 0.0;
// same type with g2.Ascendant so we only do one check
if (g1.Ascendant is VariableTreeNode) {
s5 = deltaCa / (((Variable)g1.Ascendant.Symbol).WeightManipulatorSigma * 4);
s9 = g1.ParamA.VariableIndex.Equals(g2.ParamA.VariableIndex) ? 1.0 : 0.0;
}
if (g1.Descendant is VariableTreeNode) {
s6 = deltaCb / (((Variable)g1.Descendant.Symbol).WeightManipulatorSigma * 4);
s10 = g1.ParamB.VariableIndex.Equals(g2.ParamB.VariableIndex) ? 1.0 : 0.0;
}
double similarity = 1.0;
double[] constributors = new double[10] { s1, s2, s3, s4, s5, s6, s7, s8, s9, s10 }; // s1...s10
double[] coefficients = new double[10] { 0.8, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2 }; // c1...c10
for (int i = 0; i != 10; ++i) {
similarity *= (1 - (1 - constributors[i]) * coefficients[i]);
}
return double.IsNaN(similarity) ? 0 : similarity;
}
// genetic items for computing tree similarity (S. Winkler)
public class GeneticItem {
public ISymbolicExpressionTreeNode Ascendant;
public ISymbolicExpressionTreeNode Descendant;
public int LevelDelta;
public int Index;
public double[] Coefficients; // c_i = 0.2, i=1,...,10, d_1 = 0.8
// parameters for the Ascendant and Descendant
public GeneticItemParameters ParamA;
public GeneticItemParameters ParamB;
}
public class GeneticItemParameters {
public Symbol Variant; // the variant of functions
public double Coeff; // the coefficient of terminals
public int TimeOffset; // the time offset of terminals
public int VariableIndex; // the variable index (of terminals)
}
// get genetic items
public static List GetGeneticItems(this ISymbolicExpressionTree tree, int minLevelDelta, int maxLevelDelta) {
return GetGeneticItems(tree.Root.GetSubtree(0).GetSubtree(0), minLevelDelta, maxLevelDelta).ToList();
}
private static double Coefficient(this ISymbolicExpressionTreeNode node) {
var variable = node as VariableTreeNode;
if (variable != null)
return variable.Weight;
var constant = node as ConstantTreeNode;
if (constant != null)
return constant.Value;
// return double.NaN;
return 0.0;
}
private static int VariableIndex(this ISymbolicExpressionTreeNode node) {
var variable = node as VariableTreeNode;
if (variable != null)
return variable.Symbol.AllVariableNames.ToList().IndexOf(variable.VariableName);
return -1;
}
private static IEnumerable GetGeneticItems(ISymbolicExpressionTreeNode node, int minimumLevelDelta, int maximumLevelDelta) {
var descendants = node.IterateNodesBreadth().Skip(1).ToArray();
for (int i = 0; i != descendants.Length; ++i) {
var descendant = descendants[i];
var levelDelta = node.GetBranchLevel(descendant);
if (!(minimumLevelDelta <= levelDelta && levelDelta <= maximumLevelDelta)) continue;
var p = descendant;
while (p.Parent != node && p.Parent != null)
p = p.Parent;
if (p.Parent == null) throw new Exception("The child is not a descendant of node");
var geneticItem = new GeneticItem {
Ascendant = node, Descendant = descendant, LevelDelta = levelDelta, Index = node.IndexOfSubtree(p),
ParamA = new GeneticItemParameters {
Coeff = node.Coefficient(), TimeOffset = 0, VariableIndex = node.VariableIndex(), Variant = (Symbol)node.Symbol
},
ParamB = new GeneticItemParameters {
Coeff = descendant.Coefficient(), TimeOffset = 0, VariableIndex = descendant.VariableIndex(), Variant = (Symbol)descendant.Symbol
}
};
yield return geneticItem;
}
}
// returns true if both nodes are variables, or both are constants, or both are functions
private static bool SameType(ISymbolicExpressionTreeNode a, ISymbolicExpressionTreeNode b) {
if (a is VariableTreeNode) {
return b is VariableTreeNode;
}
if (a is ConstantTreeNode) {
return b is ConstantTreeNode;
}
return true;
}
}
}