#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.EvolutionTracking;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
[Item("TraceCalculator", "Walks a genealogy graph and produces a trace of the specified subtree")]
[StorableClass]
public class TraceCalculator : Item {
private Dictionary, TraceData> traceMap;
private Dictionary> nodeListCache;
private HashSet, IGenealogyGraphNode, int>> traceCache;
public IGenealogyGraph TraceGraph { get; private set; }
public bool UpdateVertexWeights { get; set; }
public bool UpdateSubtreeWeights { get; set; }
public bool CacheTraceNodes { get; set; }
public TraceCalculator() {
ResetState();
}
protected TraceCalculator(TraceCalculator original, Cloner cloner)
: base(original, cloner) {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new TraceCalculator(this, cloner);
}
public void ResetState() {
TraceGraph = new GenealogyGraph();
traceMap = new Dictionary, TraceData>();
nodeListCache = new Dictionary>();
traceCache = new HashSet, IGenealogyGraphNode, int>>();
}
public static IGenealogyGraph TraceSubtree(IGenealogyGraphNode node, int subtreeIndex, bool updateVertexWeights = false, bool updateSubtreeWeights = false, bool cacheTraceNodes = true) {
var tc = new TraceCalculator {
UpdateVertexWeights = updateSubtreeWeights,
UpdateSubtreeWeights = updateSubtreeWeights,
CacheTraceNodes = cacheTraceNodes
};
tc.Trace(node, subtreeIndex);
return tc.TraceGraph;
}
public IGenealogyGraph Trace(IGenealogyGraphNode node, int subtreeIndex, bool resetState = true) {
if (resetState) ResetState();
TraceRecursive(node, subtreeIndex);
return TraceGraph;
}
///
/// This method starts from a given vertex in the genealogy graph and works its way
/// up the ancestry trying to track the structure of the subtree given by subtreeIndex.
/// This method will skip genealogy graph nodes that did not have an influence on the
/// structure of the tracked subtree.
///
/// Only genealogy nodes which did have an influence are added (as copies) to the trace
/// and are consequently called 'trace nodes'.
///
/// The arcs connecting trace nodes hold information about the locations of the subtrees
/// and fragments that have been swapped in the form of a tuple (si, fi, lastSi, lastFi),
/// where:
/// - si is the subtree index in the current trace node
/// - fi is the fragment index in the current trace node
/// - lastSi is the subtree index in the previous trace node
/// - lastFi is the subtree index in the previous trace node
///
/// The current node in the genealogy graph
/// The index of the traced subtree
/// The last added node in the trace graph
private void TraceRecursive(IGenealogyGraphNode node, int subtreeIndex, IGenealogyGraphNode last = null) {
var g = node;
int si = subtreeIndex; // subtree index
int fi = 0; // fragment index
while (((List)((IVertex)g).InArcs).Count > 0) {
Debug.Assert(si < g.Data.Length);
var inArcs = (List)((IVertex)g).InArcs;
var fragment = (IFragment)((IGenealogyGraphArc)inArcs.Last()).Data;
if (fragment == null) {
// TODO: think about what the correct behavior should be here (seems good so far)
// the node is either an elite node or (in rare cases) no fragment was transferred
g = (IGenealogyGraphNode)inArcs[0].Source;
continue;
}
fi = fragment.Index1; // fragment index
int fl = fragment.Root.GetLength(); // fragment length
int sl = NodeAt(g.Data, si).GetLength(); // subtree length
#region trace crossover
if (inArcs.Count == 2) {
var parent0 = (IGenealogyGraphNode)inArcs[0].Source;
var parent1 = (IGenealogyGraphNode)inArcs[1].Source;
if (fi == si) {
g = parent1;
si = fragment.Index2;
continue;
}
if (fi < si) {
if (fi + fl > si) {
// fragment contains subtree
g = parent1;
si += fragment.Index2 - fi;
} else {
// fragment distinct from subtree
g = parent0;
si += NodeAt(g.Data, fi).GetLength() - fl;
}
continue;
}
if (fi > si) {
if (fi < si + sl) {
// subtree contains fragment => branching point in the fragment graph
var n = AddTraceNode(g, si, fi); // current node becomes "last" as we restart tracing from the parent
var t0 = new Tuple, IGenealogyGraphNode, int>(parent0, n, si);
if (!(CacheTraceNodes && traceCache.Contains(t0))) {
TraceRecursive(parent0, si, n);
traceCache.Add(t0);
}
var t1 = new Tuple, IGenealogyGraphNode, int>(parent1, n, fragment.Index2);
if (!(CacheTraceNodes && traceCache.Contains(t1))) {
TraceRecursive(parent1, fragment.Index2, n);
traceCache.Add(t1);
}
break;
} else {
// subtree and fragment are distinct.
g = parent0;
continue;
}
}
}
#endregion
#region trace mutation
// mutation is handled in a simple way: we branch every time there is an overlap between the subtree and the fragment
// (since mutation effects can be quite unpredictable: replace branch, change node, shake tree, etc)
if (inArcs.Count == 1) {
var parent0 = (IGenealogyGraphNode)inArcs[0].Source;
Debug.Assert(fragment.Index1 == fragment.Index2);
// check if the subtree and the fragment overlap => branch out
if ((si == fi) || (si < fi && fi < si + sl) || (fi < si && si < fi + fl)) {
var n = AddTraceNode(g, si, fi); // current node becomes "last" as we restart tracing from the parent
int i = si < fi ? si : fi;
var t = new Tuple, IGenealogyGraphNode, int>(parent0, n, i);
if (!(CacheTraceNodes && traceCache.Contains(t))) {
TraceRecursive(parent0, i, n);
traceCache.Add(t);
}
break;
} else {
// if they don't overlap, go up
g = parent0;
if (fi < si)
si += NodeAt(g.Data, fi).GetLength() - fl;
continue;
}
}
#endregion
throw new InvalidOperationException("A node cannot have more than two parents");
}
// when we are out of the while the last vertex must be connected with the current one
// if there is no last vertex, it means the tracing reached the top of the genealogy graph
var current = AddTraceNode(g, si, fi);
if (last != null)
ConnectLast(current, last, si, fi);
}
///
/// Get the trace node from the trace graph which corresponds to node g from the genealogy graph.
/// If the trace graph does not contain such a node, one is created by performing a shallow copy of g, then inserted into the trace graph.
///
/// The genealogy graph node
/// The subtree index
/// The fragment index
///
private IGenealogyGraphNode AddTraceNode(IGenealogyGraphNode g, int si, int fi) {
var n = TraceGraph.GetByContent(g.Data);
if (n == null) {
n = g.Copy();
TraceGraph.AddVertex(n);
Debug.Assert(!traceMap.ContainsKey(n));
traceMap[n] = new TraceData(si, fi, -1, -1); // only the first two fields are needed
}
return n;
}
// caching node lists brings ~2.5-2.7x speed improvement (since graph nodes are visited multiple times)
// this caching will be even more effective with larger tree sizes
private ISymbolicExpressionTreeNode NodeAt(ISymbolicExpressionTree tree, int index) {
List list;
nodeListCache.TryGetValue(tree, out list);
if (list == null) {
list = tree.IterateNodesPrefix().ToList();
nodeListCache[tree] = list;
}
return list[index];
}
///
/// Connect the current node of the trace graph with the node that was previously added (@last). The current node of the trace graph is determined by the content
/// of the genealogy graph node @g.
///
/// The current node in the genealogy graph
/// The last added node in the trace graph
/// The index of the traced subtree
/// The index of the fragment
private void ConnectLast(IGenealogyGraphNode current, IGenealogyGraphNode last, int si, int fi) {
var lastTraceData = traceMap[last];
int lastSi = lastTraceData.SubtreeIndex; // last subtree index (index of the traced subtree in the previous trace node)
int lastFi = lastTraceData.FragmentIndex; // last fragment index (index of the fragment in the previous trace node)
var td = new TraceData(si, fi, lastSi, lastFi); // trace data
// TODO: more testing
var inArcs = (List)((IVertex)last).InArcs; // using the InArcs seems to be slightly more efficient than using the OutArcs
var arc = inArcs.FirstOrDefault(a => a.Source == current && ((IArc)a).Data.Equals(td));
if (arc == null) {
arc = new GenealogyGraphArc(current, last) { Data = td };
TraceGraph.AddArc(arc);
}
if (UpdateVertexWeights) {
arc.Weight++;
current.Weight++;
}
if (UpdateSubtreeWeights) {
var subtree = NodeAt(current.Data, td.SubtreeIndex);
foreach (var s in subtree.IterateNodesPrefix())
s.NodeWeight++;
}
}
}
public class TraceData : Tuple, IDeepCloneable {
public TraceData(int currentSubtreeIndex, int currentFragmentIndex, int lastSubtreeIndex, int lastFragmentIndex)
: base(currentSubtreeIndex, currentFragmentIndex, lastSubtreeIndex, lastFragmentIndex) {
}
public int SubtreeIndex { get { return Item1; } }
public int FragmentIndex { get { return Item2; } }
public int LastSubtreeIndex { get { return Item3; } }
public int LastFragmentIndex { get { return Item4; } }
public object Clone() {
return new TraceData(SubtreeIndex, FragmentIndex, LastSubtreeIndex, LastFragmentIndex);
}
public IDeepCloneable Clone(Cloner cloner) {
return cloner.Clone(this);
}
}
internal static class Util {
// shallow node copy (does not clone the data or the arcs)
#region some helper methods for shortening the tracing code
public static IGenealogyGraphNode Copy(this IGenealogyGraphNode node) {
return new GenealogyGraphNode(node.Data) { Rank = node.Rank, Quality = node.Quality };
}
#endregion
}
}