#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.EvolutionTracking;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
[Item("UpdateQualityOperator", "Put the estimated values of the tree in the scope to be used by the phenotypic similarity calculator")]
[StorableClass]
public class UpdateQualityOperator : EvolutionTrackingOperator {
private const string ProblemDataParameterName = "ProblemData";
private const string InterpreterParameterName = "SymbolicExpressionTreeInterpreter";
private const string EstimationLimitsParameterName = "EstimationLimits";
private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
private const string ScaleEstimatedValuesParameterName = "ScaleEstimatedValues";
#region parameters
public ILookupParameter ProblemDataParameter {
get { return (ILookupParameter)Parameters[ProblemDataParameterName]; }
}
public ILookupParameter InterpreterParameter {
get { return (ILookupParameter)Parameters[InterpreterParameterName]; }
}
public ILookupParameter EstimationLimitsParameter {
get { return (ILookupParameter)Parameters[EstimationLimitsParameterName]; }
}
public ILookupParameter SymbolicExpressionTreeParameter {
get { return (ILookupParameter)Parameters[SymbolicExpressionTreeParameterName]; }
}
public ILookupParameter ScaleEstimatedValuesParameter {
get { return (ILookupParameter)Parameters[ScaleEstimatedValuesParameterName]; }
}
#endregion
public UpdateQualityOperator() {
Parameters.Add(new LookupParameter(ProblemDataParameterName));
Parameters.Add(new LookupParameter(InterpreterParameterName));
Parameters.Add(new LookupParameter(EstimationLimitsParameterName));
Parameters.Add(new LookupParameter(SymbolicExpressionTreeParameterName));
Parameters.Add(new LookupParameter(ScaleEstimatedValuesParameterName));
}
[StorableConstructor]
protected UpdateQualityOperator(bool deserializing) : base(deserializing) { }
protected UpdateQualityOperator(UpdateQualityOperator original, Cloner cloner) : base(original, cloner) {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new UpdateQualityOperator(this, cloner);
}
public override IOperation Apply() {
var tree = SymbolicExpressionTreeParameter.ActualValue;
var problemData = ProblemDataParameter.ActualValue;
var estimationLimits = EstimationLimitsParameter.ActualValue;
var interpreter = InterpreterParameter.ActualValue;
var estimatedValues = interpreter.GetSymbolicExpressionTreeValues(tree, problemData.Dataset, problemData.TrainingIndices);
var targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices);
var scaleEstimatedValues = ScaleEstimatedValuesParameter.ActualValue.Value;
IEnumerable scaled;
if (scaleEstimatedValues) {
var linearScalingCalculator = new OnlineLinearScalingParameterCalculator();
var e1 = estimatedValues.GetEnumerator();
var e2 = targetValues.GetEnumerator();
int count = 0;
while (e1.MoveNext() && e2.MoveNext()) {
var estimated = e1.Current;
var target = e2.Current;
if (!double.IsNaN(estimated) && !double.IsInfinity(estimated))
linearScalingCalculator.Add(estimated, target);
++count;
}
if (e1.MoveNext() || e2.MoveNext())
throw new ArgumentException("Number of elements in target and estimated values enumeration do not match.");
double alpha = linearScalingCalculator.Alpha;
double beta = linearScalingCalculator.Beta;
if (linearScalingCalculator.ErrorState != OnlineCalculatorError.None) {
alpha = 0.0;
beta = 1.0;
}
scaled = estimatedValues.Select(x => x * beta + alpha).LimitToRange(estimationLimits.Lower, estimationLimits.Upper);
} else {
scaled = estimatedValues.LimitToRange(estimationLimits.Lower, estimationLimits.Upper);
}
OnlineCalculatorError error;
var r = OnlinePearsonsRCalculator.Calculate(targetValues, scaled, out error);
if (error != OnlineCalculatorError.None) r = double.NaN;
var r2 = r * r;
var variables = ExecutionContext.Scope.Variables;
((DoubleValue)variables["Quality"].Value).Value = r2;
//GenealogyGraph.GetByContent(tree).Quality = r2;
if (variables.ContainsKey("EstimatedValues")) {
variables["EstimatedValues"].Value = new DoubleArray(scaled.ToArray());
} else {
variables.Add(new Core.Variable("EstimatedValues", new DoubleArray(scaled.ToArray())));
}
return base.Apply();
}
}
}