#region License Information /* HeuristicLab * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Analysis; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Analyzers { [StorableClass] [Item("SymbolicDataAnalysisUsefulGenesAnalyzer", "An analyzer which performs pruning by promoting genes in the population that outperform their containing individuals (the individuals are replaced by their subparts).")] public class SymbolicDataAnalysisUsefulGenesAnalyzer : SingleSuccessorOperator, ISymbolicDataAnalysisAnalyzer { private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree"; private const string QualityParameterName = "Quality"; private const string ResultCollectionParameterName = "Results"; private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter"; private const string ProblemDataParameterName = "ProblemData"; private const string GenerationsParameterName = "Generations"; private const string UpdateCounterParameterName = "UpdateCounter"; private const string UpdateIntervalParameterName = "UpdateInterval"; private const string MinimumGenerationsParameterName = "MinimumGenerations"; private const string PruningProbabilityParameterName = "PruningProbability"; private const string PercentageOfBestSolutionsParameterName = "PercentageOfBestSolutions"; private const string PromotedSubtreesResultName = "Promoted subtrees"; private const string AverageQualityImprovementResultName = "Average quality improvement"; private const string AverageLengthReductionResultName = "Average length reduction"; private const string RandomParameterName = "Random"; #region Parameters public IScopeTreeLookupParameter SymbolicExpressionTreeParameter { get { return (IScopeTreeLookupParameter)Parameters[SymbolicExpressionTreeParameterName]; } } public IScopeTreeLookupParameter QualityParameter { get { return (IScopeTreeLookupParameter)Parameters[QualityParameterName]; } } public ILookupParameter RandomParameter { get { return (ILookupParameter)Parameters[RandomParameterName]; } } public ILookupParameter ResultCollectionParameter { get { return (ILookupParameter)Parameters[ResultCollectionParameterName]; } } public ILookupParameter SymbolicDataAnalysisTreeInterpreterParameter { get { return (ILookupParameter)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; } } public ILookupParameter ProblemDataParameter { get { return (ILookupParameter)Parameters[ProblemDataParameterName]; } } public ILookupParameter GenerationsParameter { get { return (ILookupParameter)Parameters[GenerationsParameterName]; } } public ValueParameter UpdateCounterParameter { get { return (ValueParameter)Parameters[UpdateCounterParameterName]; } } public ValueParameter UpdateIntervalParameter { get { return (ValueParameter)Parameters[UpdateIntervalParameterName]; } } public ValueParameter MinimumGenerationsParameter { get { return (ValueParameter)Parameters[MinimumGenerationsParameterName]; } } public ValueParameter PercentageOfBestSolutionsParameter { get { return (ValueParameter)Parameters[PercentageOfBestSolutionsParameterName]; } } public ValueParameter PruningProbabilityParameter { get { return (ValueParameter)Parameters[PruningProbabilityParameterName]; } } #endregion #region Parameter properties public int UpdateCounter { get { return UpdateCounterParameter.Value.Value; } set { UpdateCounterParameter.Value.Value = value; } } public int UpdateInterval { get { return UpdateIntervalParameter.Value.Value; } set { UpdateIntervalParameter.Value.Value = value; } } public int MinimumGenerations { get { return MinimumGenerationsParameter.Value.Value; } set { MinimumGenerationsParameter.Value.Value = value; } } public double PercentageOfBestSolutions { get { return PercentageOfBestSolutionsParameter.Value.Value; } set { PercentageOfBestSolutionsParameter.Value.Value = value; } } public double PruningProbability { get { return PruningProbabilityParameter.Value.Value; } set { PruningProbabilityParameter.Value.Value = value; } } #endregion public SymbolicDataAnalysisUsefulGenesAnalyzer() { #region Add parameters Parameters.Add(new ScopeTreeLookupParameter(SymbolicExpressionTreeParameterName)); Parameters.Add(new ScopeTreeLookupParameter(QualityParameterName)); Parameters.Add(new LookupParameter(RandomParameterName)); Parameters.Add(new LookupParameter(ResultCollectionParameterName)); Parameters.Add(new LookupParameter(ProblemDataParameterName)); Parameters.Add(new LookupParameter(SymbolicDataAnalysisTreeInterpreterParameterName)); Parameters.Add(new LookupParameter(GenerationsParameterName)); Parameters.Add(new ValueParameter(UpdateCounterParameterName, new IntValue(0))); Parameters.Add(new ValueParameter(UpdateIntervalParameterName, new IntValue(1))); Parameters.Add(new ValueParameter(MinimumGenerationsParameterName, "The minimum number of generations the algorithm must be let to evolve before applying this analyzer.", new IntValue(50))); Parameters.Add(new ValueParameter(PercentageOfBestSolutionsParameterName, "How many of the best individuals should be pruned using this method.", new PercentValue(1.0))); Parameters.Add(new ValueParameter(PruningProbabilityParameterName, "The probability to apply pruning", new PercentValue(0.1))); #endregion } protected SymbolicDataAnalysisUsefulGenesAnalyzer(SymbolicDataAnalysisUsefulGenesAnalyzer original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicDataAnalysisUsefulGenesAnalyzer(this, cloner); } [StorableConstructor] protected SymbolicDataAnalysisUsefulGenesAnalyzer(bool deserializing) : base(deserializing) { } public bool EnabledByDefault { get { return false; } } public override void InitializeState() { UpdateCounter = 0; base.InitializeState(); } public override IOperation Apply() { int generations = GenerationsParameter.ActualValue.Value; #region Update counter & update interval if (generations < MinimumGenerations) return base.Apply(); UpdateCounter++; if (UpdateCounter != UpdateInterval) { return base.Apply(); } UpdateCounter = 0; #endregion var trees = SymbolicExpressionTreeParameter.ActualValue.ToArray(); var qualities = QualityParameter.ActualValue.ToArray(); Array.Sort(qualities, trees); // sort trees array based on qualities var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue; var problemData = (IRegressionProblemData)ProblemDataParameter.ActualValue; var rows = problemData.TrainingIndices.ToList(); var random = RandomParameter.ActualValue; int replacedTrees = 0; int avgLengthReduction = 0; double avgQualityImprovement = 0; var count = (int)Math.Floor(trees.Length * PercentageOfBestSolutions); for (int i = trees.Length - 1; i >= trees.Length - count; --i) { if (random.NextDouble() > PruningProbability) continue; var tree = trees[i]; var quality = qualities[i].Value; var root = tree.Root.GetSubtree(0).GetSubtree(0); foreach (var s in root.IterateNodesPrefix().Skip(1)) { var r2 = EvaluateSubtree(s, interpreter, problemData, rows); if (double.IsNaN(r2) || r2 <= quality) continue; avgQualityImprovement += (r2 - quality); avgLengthReduction += (tree.Length - s.GetLength()); replacedTrees++; // replace tree with its own subtree var startNode = tree.Root.GetSubtree(0); startNode.RemoveSubtree(0); startNode.AddSubtree(s); // update tree quality qualities[i].Value = r2; break; } } avgQualityImprovement = replacedTrees == 0 ? 0 : avgQualityImprovement / replacedTrees; avgLengthReduction = replacedTrees == 0 ? 0 : (int)Math.Round((double)avgLengthReduction / replacedTrees); var results = ResultCollectionParameter.ActualValue; DataTable table; if (results.ContainsKey(PromotedSubtreesResultName)) { table = (DataTable)results[PromotedSubtreesResultName].Value; } else { table = new DataTable(PromotedSubtreesResultName); table.Rows.Add(new DataRow(PromotedSubtreesResultName)); results.Add(new Result(PromotedSubtreesResultName, table)); } table.Rows[PromotedSubtreesResultName].Values.Add(replacedTrees); if (results.ContainsKey(AverageQualityImprovementResultName)) { table = (DataTable)results[AverageQualityImprovementResultName].Value; } else { table = new DataTable(AverageQualityImprovementResultName); table.Rows.Add(new DataRow(AverageQualityImprovementResultName)); results.Add(new Result(AverageQualityImprovementResultName, table)); } table.Rows[AverageQualityImprovementResultName].Values.Add(avgQualityImprovement); if (results.ContainsKey(AverageLengthReductionResultName)) { table = (DataTable)results[AverageLengthReductionResultName].Value; } else { table = new DataTable(AverageLengthReductionResultName); table.Rows.Add(new DataRow(AverageLengthReductionResultName)); results.Add(new Result(AverageLengthReductionResultName, table)); } table.Rows[AverageLengthReductionResultName].Values.Add(avgLengthReduction); return base.Apply(); } private static double EvaluateSubtree(ISymbolicExpressionTreeNode subtree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, IRegressionProblemData problemData, List rows) { var linearInterpreter = (SymbolicDataAnalysisExpressionTreeLinearInterpreter)interpreter; var dataset = problemData.Dataset; var targetValues = dataset.GetDoubleValues(problemData.TargetVariable, rows); var estimatedValues = linearInterpreter.GetValues(subtree, dataset, rows); OnlineCalculatorError error; double r = OnlinePearsonsRCalculator.Calculate(targetValues, estimatedValues, out error); return (error == OnlineCalculatorError.None) ? r * r : double.NaN; } } }