#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.EvolutionTracking;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Analyzers {
[StorableClass]
[Item("SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer", "An analyzer which records the best and average genetic operator improvement")]
public class SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer : EvolutionTrackingAnalyzer {
public const string QualityParameterName = "Quality";
public const string PopulationParameterName = "SymbolicExpressionTree";
public const string CountIntermediateChildrenParameterName = "CountIntermediateChildren";
public IScopeTreeLookupParameter QualityParameter {
get { return (IScopeTreeLookupParameter)Parameters[QualityParameterName]; }
}
public IScopeTreeLookupParameter PopulationParameter {
get { return (IScopeTreeLookupParameter)Parameters[PopulationParameterName]; }
}
public IFixedValueParameter CountIntermediateChildrenParameter {
get { return (IFixedValueParameter)Parameters[CountIntermediateChildrenParameterName]; }
}
public bool CountIntermediateChildren {
get { return CountIntermediateChildrenParameter.Value.Value; }
set { CountIntermediateChildrenParameter.Value.Value = value; }
}
public SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer() {
Parameters.Add(new ScopeTreeLookupParameter(PopulationParameterName, "The population of individuals."));
Parameters.Add(new ScopeTreeLookupParameter(QualityParameterName, "The individual qualities."));
Parameters.Add(new FixedValueParameter(CountIntermediateChildrenParameterName, "Specifies whether to consider intermediate children (when crossover was followed by mutation). This should be set to false for offspring selection.", new BoolValue(true)));
CountIntermediateChildrenParameter.Hidden = true;
}
[StorableConstructor]
protected SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer(bool deserializing) : base(deserializing) { }
public SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer(
SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer original, Cloner cloner) : base(original, cloner) {
CountIntermediateChildren = original.CountIntermediateChildren;
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer(this, cloner);
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
if (!Parameters.ContainsKey(CountIntermediateChildrenParameterName))
Parameters.Add(new FixedValueParameter(CountIntermediateChildrenParameterName, "Specifies whether to consider intermediate children (when crossover was followed by mutation", new BoolValue(true)));
CountIntermediateChildrenParameter.Hidden = true;
}
public override IOperation Apply() {
IntValue updateCounter = UpdateCounterParameter.ActualValue;
if (updateCounter == null) {
updateCounter = new IntValue(0);
UpdateCounterParameter.ActualValue = updateCounter;
}
updateCounter.Value++;
if (updateCounter.Value != UpdateInterval.Value) return base.Apply();
updateCounter.Value = 0;
var graph = PopulationGraph;
if (graph == null || Generation.Value == 0)
return base.Apply();
var generation = Generation.Value;
var averageQuality = QualityParameter.ActualValue.Average(x => x.Value);
var population = PopulationParameter.ActualValue;
var populationSize = population.Length;
// var vertices = population.Select(graph.GetByContent).ToList();
var crossoverChildren = new List>();
var mutationChildren = new List>();
var vertices = graph.Vertices.Where(x => x.Rank > generation - 1);
foreach (var v in vertices) {
if (v.InDegree == 2) {
crossoverChildren.Add(v);
} else {
var parent = v.Parents.First();
// mutation is always preceded by crossover
// so the parent vertex should have an intermediate rank
// otherwise, it is the previos generation elite
if (parent.Rank.IsAlmost(generation - 1) && parent.IsElite)
continue;
mutationChildren.Add(v);
}
}
DataTable table;
#region crossover improvement
if (!Results.ContainsKey("Crossover improvement")) {
table = new DataTable("Crossover improvement");
Results.Add(new Result("Crossover improvement", table));
table.Rows.AddRange(new[] {
new DataRow("Average crossover child quality") { VisualProperties = { StartIndexZero = true } },
new DataRow("Average crossover parent quality") { VisualProperties = { StartIndexZero = true } },
new DataRow("Best crossover child quality") { VisualProperties = { StartIndexZero = true } },
new DataRow("Best crossover parent quality") { VisualProperties = { StartIndexZero = true } },
});
} else {
table = (DataTable)Results["Crossover improvement"].Value;
}
var avgCrossoverParentQuality = crossoverChildren.SelectMany(x => x.Parents).Average(x => x.Quality);
var avgCrossoverChildQuality = crossoverChildren.Average(x => x.Quality);
var bestCrossoverChildQuality = crossoverChildren.OrderBy(x => x.Quality).Last().Quality;
var bestCrossoverParentQuality = crossoverChildren.OrderBy(x => x.Quality).Last().Parents.First().Quality;
table.Rows["Average crossover child quality"].Values.Add(avgCrossoverChildQuality);
table.Rows["Average crossover parent quality"].Values.Add(avgCrossoverParentQuality);
table.Rows["Best crossover child quality"].Values.Add(bestCrossoverChildQuality);
table.Rows["Best crossover parent quality"].Values.Add(bestCrossoverParentQuality);
#endregion
#region mutation improvement
if (!Results.ContainsKey("Mutation improvement")) {
table = new DataTable("Mutation improvement");
Results.Add(new Result("Mutation improvement", table));
table.Rows.AddRange(new[] {
new DataRow("Average mutation child quality") { VisualProperties = { StartIndexZero = true } },
new DataRow("Average mutation parent quality") { VisualProperties = { StartIndexZero = true } },
new DataRow("Best mutation child quality") { VisualProperties = { StartIndexZero = true } },
new DataRow("Best mutation parent quality") { VisualProperties = { StartIndexZero = true } },
});
} else {
table = (DataTable)Results["Mutation improvement"].Value;
}
var avgMutationParentQuality = mutationChildren.SelectMany(x => x.Parents).Average(x => x.Quality);
var avgMutationChildQuality = mutationChildren.Average(x => x.Quality);
var bestMutationChildQuality = mutationChildren.OrderBy(x => x.Quality).Last().Quality;
var bestMutationParentQuality = mutationChildren.OrderBy(x => x.Quality).Last().Parents.First().Quality;
table.Rows["Average mutation child quality"].Values.Add(avgMutationChildQuality);
table.Rows["Average mutation parent quality"].Values.Add(avgMutationParentQuality);
table.Rows["Best mutation child quality"].Values.Add(bestMutationChildQuality);
table.Rows["Best mutation parent quality"].Values.Add(bestMutationParentQuality);
#endregion
return base.Apply();
}
}
}