#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using HeuristicLab.Analysis; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.EvolutionTracking; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Analyzers { [StorableClass] [Item("SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer", "An analyzer which records the best and average genetic operator improvement")] public class SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer : EvolutionTrackingAnalyzer { public const string QualityParameterName = "Quality"; public const string PopulationParameterName = "SymbolicExpressionTree"; public const string CountIntermediateChildrenParameterName = "CountIntermediateChildren"; public IScopeTreeLookupParameter QualityParameter { get { return (IScopeTreeLookupParameter)Parameters[QualityParameterName]; } } public IScopeTreeLookupParameter PopulationParameter { get { return (IScopeTreeLookupParameter)Parameters[PopulationParameterName]; } } public IFixedValueParameter CountIntermediateChildrenParameter { get { return (IFixedValueParameter)Parameters[CountIntermediateChildrenParameterName]; } } public bool CountIntermediateChildren { get { return CountIntermediateChildrenParameter.Value.Value; } set { CountIntermediateChildrenParameter.Value.Value = value; } } public SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer() { Parameters.Add(new ScopeTreeLookupParameter(PopulationParameterName, "The population of individuals.")); Parameters.Add(new ScopeTreeLookupParameter(QualityParameterName, "The individual qualities.")); Parameters.Add(new FixedValueParameter(CountIntermediateChildrenParameterName, "Specifies whether to consider intermediate children (when crossover was followed by mutation). This should be set to false for offspring selection.", new BoolValue(true))); CountIntermediateChildrenParameter.Hidden = true; } [StorableConstructor] protected SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer(bool deserializing) : base(deserializing) { } public SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer( SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer original, Cloner cloner) : base(original, cloner) { CountIntermediateChildren = original.CountIntermediateChildren; } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicDataAnalysisGeneticOperatorImprovementAnalyzer(this, cloner); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { if (!Parameters.ContainsKey(CountIntermediateChildrenParameterName)) Parameters.Add(new FixedValueParameter(CountIntermediateChildrenParameterName, "Specifies whether to consider intermediate children (when crossover was followed by mutation", new BoolValue(true))); CountIntermediateChildrenParameter.Hidden = true; } public override IOperation Apply() { IntValue updateCounter = UpdateCounterParameter.ActualValue; if (updateCounter == null) { updateCounter = new IntValue(0); UpdateCounterParameter.ActualValue = updateCounter; } updateCounter.Value++; if (updateCounter.Value != UpdateInterval.Value) return base.Apply(); updateCounter.Value = 0; var graph = PopulationGraph; if (graph == null || Generation.Value == 0) return base.Apply(); var generation = Generation.Value; var averageQuality = QualityParameter.ActualValue.Average(x => x.Value); var population = PopulationParameter.ActualValue; var populationSize = population.Length; var vertices = population.Select(graph.GetByContent).ToList(); DataTable table; double aac = 0; // ratio of above average children produced double aacp = 0; // ratio of above average children from above average parents #region crossover improvement if (!Results.ContainsKey("Crossover improvement")) { table = new DataTable("Crossover improvement"); Results.Add(new Result("Crossover improvement", table)); table.Rows.AddRange(new[] { new DataRow("Average crossover improvement (root parent)") { VisualProperties = { StartIndexZero = true } }, new DataRow("Average crossover improvement (non-root parent)") { VisualProperties = { StartIndexZero = true } }, new DataRow("Average child-parents quality difference") { VisualProperties = { StartIndexZero = true } }, new DataRow("Best crossover improvement (root parent)") { VisualProperties = { StartIndexZero = true } }, new DataRow("Best crossover improvement (non-root parent)") { VisualProperties = { StartIndexZero = true }}, new DataRow("Above average children") { VisualProperties = { StartIndexZero = true }}, new DataRow("Above average children from above average parents") { VisualProperties = { StartIndexZero = true } }, }); } else { table = (DataTable)Results["Crossover improvement"].Value; } var crossoverChildren = vertices.Where(x => x.InDegree == 2).ToList(); if (CountIntermediateChildren) crossoverChildren.AddRange(vertices.Where(x => x.InDegree == 1).Select(v => v.Parents.First()).Where(p => p.Rank.IsAlmost(generation - 0.5))); // add intermediate children foreach (var c in crossoverChildren) { if (c.Quality > averageQuality) { aac++; if (c.Parents.All(x => x.Quality > averageQuality)) aacp++; } } var avgRootParentQualityImprovement = crossoverChildren.Average(x => x.Quality - x.Parents.First().Quality); var avgNonRootParentQualityImprovement = crossoverChildren.Average(x => x.Quality - x.Parents.Last().Quality); var avgChildParentQuality = crossoverChildren.Average(x => x.Quality - x.Parents.Average(p => p.Quality)); var bestRootParentQualityImprovement = crossoverChildren.Max(x => x.Quality - x.Parents.First().Quality); var bestNonRootParentQualityImprovement = crossoverChildren.Max(x => x.Quality - x.Parents.Last().Quality); table.Rows["Average crossover improvement (root parent)"].Values.Add(avgRootParentQualityImprovement); table.Rows["Average crossover improvement (non-root parent)"].Values.Add(avgNonRootParentQualityImprovement); table.Rows["Best crossover improvement (root parent)"].Values.Add(bestRootParentQualityImprovement); table.Rows["Best crossover improvement (non-root parent)"].Values.Add(bestNonRootParentQualityImprovement); table.Rows["Average child-parents quality difference"].Values.Add(avgChildParentQuality); table.Rows["Above average children"].Values.Add(aac / populationSize); table.Rows["Above average children from above average parents"].Values.Add(aacp / populationSize); #endregion #region mutation improvement if (!Results.ContainsKey("Mutation improvement")) { table = new DataTable("Mutation improvement"); Results.Add(new Result("Mutation improvement", table)); table.Rows.AddRange(new[] { new DataRow("Average mutation improvement") { VisualProperties = { StartIndexZero = true } }, new DataRow("Best mutation improvement") { VisualProperties = { StartIndexZero = true } }, new DataRow("Above average children") { VisualProperties = { StartIndexZero = true } }, new DataRow("Above average children from above average parents") { VisualProperties = { StartIndexZero = true } }, }); } else { table = (DataTable)Results["Mutation improvement"].Value; } aac = 0; aacp = 0; var mutationChildren = vertices.Where(x => x.InDegree == 1).ToList(); foreach (var c in mutationChildren) { if (c.Quality > averageQuality) { aac++; if (c.Parents.All(x => x.Quality > averageQuality)) aacp++; } } var avgMutationImprovement = mutationChildren.Average(x => x.Quality - x.Parents.First().Quality); var bestMutationImprovement = mutationChildren.Max(x => x.Quality - x.Parents.First().Quality); table.Rows["Average mutation improvement"].Values.Add(avgMutationImprovement); table.Rows["Best mutation improvement"].Values.Add(bestMutationImprovement); table.Rows["Above average children"].Values.Add(aac / populationSize); table.Rows["Above average children from above average parents"].Values.Add(aacp / populationSize); #endregion return base.Apply(); } } }