1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
27 | using HeuristicLab.Operators;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Problems.TravelingSalesman {
|
---|
33 | /// <summary>
|
---|
34 | /// An operator for analyzing the diversity of a population of solutions for a Traveling Salesman Problems given in path representation using city coordinates.
|
---|
35 | /// </summary>
|
---|
36 | [Item("TSPPopulationDiversityAnalyzer", "An operator for analyzing the diversity of a population of solutions for a Traveling Salesman Problems given in path representation using city coordinates.")]
|
---|
37 | [StorableClass]
|
---|
38 | public sealed class TSPPopulationDiversityAnalyzer : SingleSuccessorOperator, IAnalyzer {
|
---|
39 |
|
---|
40 | // TODO:
|
---|
41 | // - iterations sampling
|
---|
42 | // - view
|
---|
43 |
|
---|
44 | public ScopeTreeLookupParameter<Permutation> PermutationParameter {
|
---|
45 | get { return (ScopeTreeLookupParameter<Permutation>)Parameters["Permutation"]; }
|
---|
46 | }
|
---|
47 | public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
48 | get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
49 | }
|
---|
50 | public ValueParameter<BoolValue> StoreCompleteHistoryParameter {
|
---|
51 | get { return (ValueParameter<BoolValue>)Parameters["StoreCompleteHistory"]; }
|
---|
52 | }
|
---|
53 | public ValueParameter<ItemList<DoubleMatrix>> SimilaritiesParameter {
|
---|
54 | get { return (ValueParameter<ItemList<DoubleMatrix>>)Parameters["Similarities"]; }
|
---|
55 | }
|
---|
56 | public ValueParameter<ItemList<DoubleArray>> MaximumSimilaritiesParameter {
|
---|
57 | get { return (ValueParameter<ItemList<DoubleArray>>)Parameters["MaximumSimilarities"]; }
|
---|
58 | }
|
---|
59 | public ValueParameter<ItemList<DoubleValue>> AverageMaximumSimilaritiesParameter {
|
---|
60 | get { return (ValueParameter<ItemList<DoubleValue>>)Parameters["AverageMaximumSimilarities"]; }
|
---|
61 | }
|
---|
62 | public ValueParameter<ItemList<DoubleValue>> AverageSimilaritiesParameter {
|
---|
63 | get { return (ValueParameter<ItemList<DoubleValue>>)Parameters["AverageSimilarities"]; }
|
---|
64 | }
|
---|
65 |
|
---|
66 | public TSPPopulationDiversityAnalyzer()
|
---|
67 | : base() {
|
---|
68 | Parameters.Add(new ScopeTreeLookupParameter<Permutation>("Permutation", "The TSP solutions given in path representation from which the best solution should be analyzed."));
|
---|
69 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The qualities of the TSP solutions which should be analyzed."));
|
---|
70 | Parameters.Add(new ValueParameter<BoolValue>("StoreCompleteHistory", "Flag that denotes whether the complete history of similarity values shall be stored.", new BoolValue(true)));
|
---|
71 | Parameters.Add(new ValueParameter<ItemList<DoubleMatrix>>("Similarities", "The similarities of the TSP solutions which should be analyzed."));
|
---|
72 | Parameters.Add(new ValueParameter<ItemList<DoubleArray>>("MaximumSimilarities", "The maximum similarities of the TSP solutions which should be analyzed."));
|
---|
73 | Parameters.Add(new ValueParameter<ItemList<DoubleValue>>("AverageMaximumSimilarities", "The average maximum similarities of the TSP solutions which should be analyzed."));
|
---|
74 | Parameters.Add(new ValueParameter<ItemList<DoubleValue>>("AverageSimilarities", "The average similarities of the TSP solutions which should be analyzed."));
|
---|
75 | }
|
---|
76 |
|
---|
77 | public override IOperation Apply() {
|
---|
78 |
|
---|
79 | #region testing
|
---|
80 | /*
|
---|
81 | Permutation permutationA = new Permutation(PermutationTypes.Absolute, new int[] { 0, 5, 4, 3, 2, 1 });
|
---|
82 | Permutation permutationB = new Permutation(PermutationTypes.Absolute, new int[] { 0, 3, 2, 4, 5, 1 });
|
---|
83 | Permutation permutationC = new Permutation(PermutationTypes.Absolute, new int[] { 3, 2, 4, 5, 1, 0 });
|
---|
84 | Permutation permutationD = new Permutation(PermutationTypes.Absolute, new int[] { 3, 2, 4, 5, 0, 1 });
|
---|
85 | int[] edgesA = CalculateEdgesVector(permutationA);
|
---|
86 | int[] edgesB = CalculateEdgesVector(permutationB);
|
---|
87 | int[] edgesC = CalculateEdgesVector(permutationC);
|
---|
88 | int[] edgesD = CalculateEdgesVector(permutationD);
|
---|
89 | double s = CalculateSimilarity(edgesA, edgesB);
|
---|
90 | s = CalculateSimilarity(edgesA, edgesA);
|
---|
91 | s = CalculateSimilarity(edgesB, edgesB);
|
---|
92 | s = CalculateSimilarity(edgesC, edgesC);
|
---|
93 | s = CalculateSimilarity(edgesD, edgesD);
|
---|
94 | s = CalculateSimilarity(edgesB, edgesC);
|
---|
95 | s = CalculateSimilarity(edgesC, edgesD);
|
---|
96 | */
|
---|
97 | #endregion
|
---|
98 |
|
---|
99 | ItemArray<Permutation> permutations = PermutationParameter.ActualValue;
|
---|
100 | ItemArray<DoubleValue> qualities = QualityParameter.ActualValue;
|
---|
101 | Permutation[] permutationsArray = permutations.ToArray();
|
---|
102 | DoubleValue[] qualitiesArray = qualities.ToArray();
|
---|
103 | int cities = permutationsArray.Length;
|
---|
104 | #region sort permutations array
|
---|
105 | for (int i = 0; i < cities; i++) {
|
---|
106 | int minIndex = i;
|
---|
107 | for (int j = i + 1; j < cities; j++) {
|
---|
108 | if (qualitiesArray[j].Value < qualitiesArray[minIndex].Value)
|
---|
109 | minIndex = j;
|
---|
110 | }
|
---|
111 | if (minIndex != i) {
|
---|
112 | Permutation p = permutationsArray[i];
|
---|
113 | permutationsArray[i] = permutationsArray[minIndex];
|
---|
114 | permutationsArray[minIndex] = p;
|
---|
115 | DoubleValue d = qualitiesArray[i];
|
---|
116 | qualitiesArray[i] = qualitiesArray[minIndex];
|
---|
117 | qualitiesArray[minIndex] = d;
|
---|
118 | }
|
---|
119 | }
|
---|
120 | #endregion
|
---|
121 |
|
---|
122 | int[][] edges = new int[cities][];
|
---|
123 | for (int i = 0; i < cities; i++)
|
---|
124 | edges[i] = CalculateEdgesVector(permutationsArray[i]);
|
---|
125 |
|
---|
126 | DoubleMatrix similarities = new DoubleMatrix(cities, cities);
|
---|
127 | DoubleArray maxSimilarities = new DoubleArray(cities);
|
---|
128 | double avgSimilarity = 0;
|
---|
129 | int n = 0;
|
---|
130 | for (int i = 0; i < cities; i++) {
|
---|
131 | similarities[i, i] = 1;
|
---|
132 | for (int j = (i + 1); j < cities; j++) {
|
---|
133 | double similarity = CalculateSimilarity(edges[i], edges[j]);
|
---|
134 | avgSimilarity += similarity;
|
---|
135 | n++;
|
---|
136 | similarities[i, j] = similarity;
|
---|
137 | similarities[j, i] = similarity;
|
---|
138 | if (maxSimilarities[i] < similarity)
|
---|
139 | maxSimilarities[i] = similarity;
|
---|
140 | if (maxSimilarities[j] < similarity)
|
---|
141 | maxSimilarities[j] = similarity;
|
---|
142 | }
|
---|
143 | }
|
---|
144 | DoubleValue averageMaximumSimilarity = new DoubleValue(maxSimilarities.Average());
|
---|
145 | DoubleValue averageSimilarity = new DoubleValue(avgSimilarity / n);
|
---|
146 |
|
---|
147 | if (SimilaritiesParameter.Value == null) {
|
---|
148 | SimilaritiesParameter.Value = new ItemList<DoubleMatrix>();
|
---|
149 | MaximumSimilaritiesParameter.Value = new ItemList<DoubleArray>();
|
---|
150 | AverageMaximumSimilaritiesParameter.Value = new ItemList<DoubleValue>();
|
---|
151 | AverageSimilaritiesParameter.Value = new ItemList<DoubleValue>();
|
---|
152 | }
|
---|
153 | if (!StoreCompleteHistoryParameter.Value.Value && SimilaritiesParameter.Value.Count > 0) {
|
---|
154 | SimilaritiesParameter.Value[SimilaritiesParameter.Value.Count - 1] = null;
|
---|
155 | MaximumSimilaritiesParameter.Value[MaximumSimilaritiesParameter.Value.Count - 1] = null;
|
---|
156 | }
|
---|
157 | SimilaritiesParameter.Value.Add(similarities);
|
---|
158 | MaximumSimilaritiesParameter.Value.Add(maxSimilarities);
|
---|
159 | AverageMaximumSimilaritiesParameter.Value.Add(averageMaximumSimilarity);
|
---|
160 | AverageSimilaritiesParameter.Value.Add(averageSimilarity);
|
---|
161 |
|
---|
162 | return base.Apply();
|
---|
163 | }
|
---|
164 |
|
---|
165 | private static int[] CalculateEdgesVector(Permutation permutation) {
|
---|
166 | int cities = permutation.Length;
|
---|
167 | int[] edgesVector = new int[cities];
|
---|
168 | for (int i = 0; i < (cities - 1); i++)
|
---|
169 | edgesVector[permutation[i]] = permutation[i + 1];
|
---|
170 | edgesVector[permutation[cities - 1]] = permutation[0];
|
---|
171 | return edgesVector;
|
---|
172 | }
|
---|
173 |
|
---|
174 | private double CalculateSimilarity(int[] edgesA, int[] edgesB) {
|
---|
175 | if (edgesA.Length != edgesB.Length)
|
---|
176 | throw new InvalidOperationException("ERROR in " + Name + ": Similarity can only be calculated between instances of an equal number of cities");
|
---|
177 | int cities = edgesA.Length;
|
---|
178 | int similarEdges = 0;
|
---|
179 | for (int i = 0; i < edgesA.Length; i++) {
|
---|
180 | if (edgesA[i] == edgesB[i] || edgesA[edgesB[i]] == i)
|
---|
181 | similarEdges++;
|
---|
182 | }
|
---|
183 | return (double)(similarEdges) / cities;
|
---|
184 | }
|
---|
185 |
|
---|
186 | }
|
---|
187 | }
|
---|