#region License Information /* HeuristicLab * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using HeuristicLab.Analysis; using HeuristicLab.Core; using HeuristicLab.Common; using HeuristicLab.Data; using HeuristicLab.Encodings.PermutationEncoding; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using System.Data; namespace HeuristicLab.Problems.TravelingSalesman { /// /// An operator for analyzing the diversity of a population of solutions for a Traveling Salesman Problems given in path representation using city coordinates. /// [Item("TSPPopulationDiversityAnalyzer", "An operator for analyzing the diversity of a population of solutions for a Traveling Salesman Problems given in path representation using city coordinates.")] [StorableClass] public sealed class TSPPopulationDiversityAnalyzer : SingleSuccessorOperator, IAnalyzer { // TODO: // - iterations sampling // - view // - extract population diversity basic behavior into separate project // - analyze variation of values public const string PermutationKey = "Permutation"; public ScopeTreeLookupParameter PermutationParameter { get { return (ScopeTreeLookupParameter)Parameters[PermutationKey]; } } public const string QualityKey = "Quality"; public ScopeTreeLookupParameter QualityParameter { get { return (ScopeTreeLookupParameter)Parameters[QualityKey]; } } public const string StoreCompleteHistoryKey = "StoreCompleteHistory"; public ValueParameter StoreCompleteHistoryParameter { get { return (ValueParameter)Parameters[StoreCompleteHistoryKey]; } } public const string CurrentAverageSimilarityKey = "Current Average Population Similarity"; public const string AverageSimilarityProgressKey = "Average Population Similarity Progress"; public const string CurrentAverageMaximumSimilarityKey = "Current Average Maximum Population Similarity"; public const string AverageMaximumSimilarityProgressKey = "Average Maximum Population Similarity Progress"; public const string PopulationDiversityAnalysisResultsDetailsKey = "Population Diversity Analysis Results Details"; public const string ResultsKey = "Results"; public ValueLookupParameter ResultsParameter { get { return (ValueLookupParameter)Parameters[ResultsKey]; } } public TSPPopulationDiversityAnalyzer() : base() { Parameters.Add(new ScopeTreeLookupParameter(PermutationKey, "The TSP solutions given in path representation from which the best solution should be analyzed.")); Parameters.Add(new ScopeTreeLookupParameter(QualityKey, "The qualities of the TSP solutions which should be analyzed.")); Parameters.Add(new ValueParameter(StoreCompleteHistoryKey, "Flag that denotes whether the complete history of similarity values shall be stored.", new BoolValue(true))); Parameters.Add(new ValueLookupParameter("Results", "The results collection in which the population diversity analysis results should be stored.")); } public override IOperation Apply() { ItemArray permutations = PermutationParameter.ActualValue; ItemArray qualities = QualityParameter.ActualValue; Permutation[] permutationsArray = permutations.ToArray(); DoubleValue[] qualitiesArray = qualities.ToArray(); int cities = permutationsArray.Length; ResultCollection results = ResultsParameter.ActualValue; #region sort permutations array for (int i = 0; i < cities; i++) { int minIndex = i; for (int j = i + 1; j < cities; j++) { if (qualitiesArray[j].Value < qualitiesArray[minIndex].Value) minIndex = j; } if (minIndex != i) { Permutation p = permutationsArray[i]; permutationsArray[i] = permutationsArray[minIndex]; permutationsArray[minIndex] = p; DoubleValue d = qualitiesArray[i]; qualitiesArray[i] = qualitiesArray[minIndex]; qualitiesArray[minIndex] = d; } } #endregion int[][] edges = new int[cities][]; for (int i = 0; i < cities; i++) edges[i] = CalculateEdgesVector(permutationsArray[i]); DoubleMatrix similarities = new DoubleMatrix(cities, cities); DoubleArray maxSimilarities = new DoubleArray(cities); double avgSimilarity = 0; int n = 0; for (int i = 0; i < cities; i++) { similarities[i, i] = 1; for (int j = (i + 1); j < cities; j++) { double similarity = CalculateSimilarity(edges[i], edges[j]); avgSimilarity += similarity; n++; similarities[i, j] = similarity; similarities[j, i] = similarity; if (maxSimilarities[i] < similarity) maxSimilarities[i] = similarity; if (maxSimilarities[j] < similarity) maxSimilarities[j] = similarity; } } DoubleValue averageMaximumSimilarity = new DoubleValue(maxSimilarities.Average()); DoubleValue averageSimilarity = new DoubleValue(avgSimilarity / n); #region Store average similarity values if (results.ContainsKey(CurrentAverageSimilarityKey)) results[CurrentAverageSimilarityKey].Value = averageSimilarity; else results.Add(new Result(CurrentAverageSimilarityKey, averageSimilarity)); if (!results.ContainsKey(AverageSimilarityProgressKey)) results.Add(new Result(AverageSimilarityProgressKey, new Analysis.DataTable(AverageSimilarityProgressKey))); Analysis.DataTable averageSimilarityProgressDataTable = (Analysis.DataTable)(results[AverageSimilarityProgressKey].Value); if (averageSimilarityProgressDataTable.Rows.Count == 0) averageSimilarityProgressDataTable.Rows.Add(new Analysis.DataRow(AverageSimilarityProgressKey)); averageSimilarityProgressDataTable.Rows[AverageSimilarityProgressKey].Values.Add(averageSimilarity.Value); #endregion #region Store average maximum similarity values if (results.ContainsKey(CurrentAverageMaximumSimilarityKey)) results[CurrentAverageMaximumSimilarityKey].Value = averageMaximumSimilarity; else results.Add(new Result(CurrentAverageMaximumSimilarityKey, averageMaximumSimilarity)); if (!results.ContainsKey(AverageMaximumSimilarityProgressKey)) results.Add(new Result(AverageMaximumSimilarityProgressKey, new Analysis.DataTable(AverageMaximumSimilarityProgressKey))); Analysis.DataTable averageMaximumSimilarityProgressDataTable = (Analysis.DataTable)(results[AverageMaximumSimilarityProgressKey].Value); if (averageMaximumSimilarityProgressDataTable.Rows.Count == 0) averageMaximumSimilarityProgressDataTable.Rows.Add(new Analysis.DataRow(AverageMaximumSimilarityProgressKey)); averageMaximumSimilarityProgressDataTable.Rows[AverageMaximumSimilarityProgressKey].Values.Add(averageMaximumSimilarity.Value); #endregion #region Store details TSPPopulationDiversityAnalysisDetails details; if (!results.ContainsKey(PopulationDiversityAnalysisResultsDetailsKey)) { details = new TSPPopulationDiversityAnalysisDetails(); results.Add(new Result(PopulationDiversityAnalysisResultsDetailsKey, details)); } else { details = (TSPPopulationDiversityAnalysisDetails)(results[PopulationDiversityAnalysisResultsDetailsKey].Value); } details.AverageSimilarities.Add(averageSimilarity); details.AverageMaximumSimilarities.Add(averageMaximumSimilarity); details.Similarities.Add(similarities); details.MaximumSimilarities.Add(maxSimilarities); if (!StoreCompleteHistoryParameter.Value.Value && details.Similarities.Count > 1) { details.Similarities[details.Similarities.Count - 1] = null; details.MaximumSimilarities[details.MaximumSimilarities.Count - 1] = null; } #endregion return base.Apply(); } private static int[] CalculateEdgesVector(Permutation permutation) { int cities = permutation.Length; int[] edgesVector = new int[cities]; for (int i = 0; i < (cities - 1); i++) edgesVector[permutation[i]] = permutation[i + 1]; edgesVector[permutation[cities - 1]] = permutation[0]; return edgesVector; } private double CalculateSimilarity(int[] edgesA, int[] edgesB) { if (edgesA.Length != edgesB.Length) throw new InvalidOperationException("ERROR in " + Name + ": Similarity can only be calculated between instances of an equal number of cities"); int cities = edgesA.Length; int similarEdges = 0; for (int i = 0; i < edgesA.Length; i++) { if (edgesA[i] == edgesB[i] || edgesA[edgesB[i]] == i) similarEdges++; } return (double)(similarEdges) / cities; } } }