#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Xml;
using HeuristicLab.DataImporter.Data;
using HeuristicLab.DataImporter.Data.CommandBase;
using HeuristicLab.DataImporter.Data.Model;
using HeuristicLab.DataImporter.Command.View;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.DataImporter.Command {
[StorableClass]
[ViewableCommandInfoAttribute("Scale to normal distribution", 1, ColumnGroupState.DoubleColumnSelected, "Change Values",
Position = 5, OptionsView = typeof(NormalDistributionCommandView))]
public class NormalDistributionScalingCommand : ColumnGroupCommandWithAffectedColumnsBase {
private List> oldNormalDistribution;
private NormalDistributionScalingCommand()
: base(null, string.Empty, null) {
oldNormalDistribution = new List>();
}
public NormalDistributionScalingCommand(DataSet dataSet, string columnGroupName, int[] affectedColumns)
: base(dataSet, columnGroupName, affectedColumns) {
oldNormalDistribution = new List>();
}
public override string Description {
get { return "Scale to normal distribution"; }
}
[Storable]
private double newMean;
public double Mean {
get { return this.newMean; }
set { this.newMean = value; }
}
[Storable]
private double newStddev;
public double StandardDeviation {
get { return this.newStddev; }
set { this.newStddev = value; }
}
public override void Execute() {
base.Execute();
DoubleColumn column;
double oldMean;
double oldStddev;
for (int i = 0; i < AffectedColumns.Length; i++) {
if (ColumnGroup.GetColumn(AffectedColumns[i]) is DoubleColumn) {
column = (DoubleColumn)ColumnGroup.GetColumn(AffectedColumns[i]);
if (column.NonNullValuesCount == 0)
continue;
oldMean = (double)column.Mean;
oldStddev = (double)column.StandardDeviation;
CalculateNewColumn(column, newMean, newStddev, oldMean, oldStddev);
oldNormalDistribution.Add(new KeyValuePair(oldMean, oldStddev));
}
}
ColumnGroup.FireChanged();
ColumnGroup = null;
}
public override void UndoExecute() {
base.UndoExecute();
DoubleColumn column;
double oldMean;
double oldStddev;
int j = 0;
for (int i = 0; i < AffectedColumns.Length; i++) {
if (ColumnGroup.GetColumn(AffectedColumns[i]) is DoubleColumn) {
column = (DoubleColumn)ColumnGroup.GetColumn(AffectedColumns[i]);
if (column.NonNullValuesCount == 0)
continue;
oldMean = oldNormalDistribution[j].Key;
oldStddev = oldNormalDistribution[j].Value;
CalculateNewColumn(column, oldMean, oldStddev, newMean, newStddev);
j++;
}
}
oldNormalDistribution.Clear();
ColumnGroup.FireChanged();
ColumnGroup = null;
}
private void CalculateNewColumn(DoubleColumn column, double newMean, double newStddev, double oldMean, double oldStddev) {
double newValue;
double oldValue;
for (int val = 0; val < column.TotalValuesCount; val++) {
if (column.GetValue(val) == null)
continue;
oldValue = (double)column.GetValue(val);
if (oldStddev == 0)
newValue = oldValue - oldMean + newMean;
else
newValue = ((oldValue - oldMean) / oldStddev) * newStddev + newMean;
column.ChangeValue(val, newValue);
}
}
}
}