#region License Information /* HeuristicLab * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using System.Threading; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Random; using HeuristicLab.Core; using Microsoft.VisualStudio.TestTools.UnitTesting; using ExecutionContext = HeuristicLab.Core.ExecutionContext; using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Tests { [TestClass()] public class SymbolicDataAnalysisExpressionCrossoverTest { private const int PopulationSize = 10000; private const int MaxTreeDepth = 10; private const int MaxTreeLength = 100; private const int Rows = 1000; private const int Columns = 50; /// ///Gets or sets the test context which provides ///information about and functionality for the current test run. /// public TestContext TestContext { get; set; } [TestMethod] public void SymbolicDataAnalysisExpressionSemanticSimilarityCrossoverPerformanceTest() { SemanticSimilarityCrossoverPerformanceTest(); } [TestMethod] public void SymbolicDataAnalysisExpressionProbabilisticFunctionalCrossoverPerformanceTest() { ProbabilisticFunctionalCrossoverPerformanceTest(); } [TestMethod] public void SymbolicDataAnalysisExpressionDeterministicBestCrossoverPerformanceTest() { DeterministicBestCrossoverPerformanceTest(); } [TestMethod] public void SymbolicDataAnalysisExpressionContextAwareCrossoverPerformanceTest() { ContextAwareCrossoverPerformanceTest(); } [TestMethod] public void SymbolicDataAnalysisExpressionDepthConstrainedCrossoverPerformanceTest() { DepthConstrainedCrossoverPerformanceTest(); } private static void DepthConstrainedCrossoverPerformanceTest() { var twister = new MersenneTwister(31415); var dataset = Util.CreateRandomDataset(twister, Rows, Columns); var grammar = new FullFunctionalExpressionGrammar(); var stopwatch = new Stopwatch(); grammar.MaximumFunctionArguments = 0; grammar.MaximumFunctionDefinitions = 0; grammar.MinimumFunctionArguments = 0; grammar.MinimumFunctionDefinitions = 0; var trees = Util.CreateRandomTrees(twister, dataset, grammar, PopulationSize, 1, MaxTreeLength, 0, 0); foreach (ISymbolicExpressionTree tree in trees) { Util.InitTree(tree, twister, new List(dataset.VariableNames)); } var problemData = new RegressionProblemData(dataset, dataset.VariableNames, dataset.VariableNames.Last()); var problem = new SymbolicRegressionSingleObjectiveProblem(); problem.ProblemData = problemData; var crossover = problem.OperatorsParameter.Value.OfType>().First(); //crossover.DepthRange.Value = "HighLevel"; //crossover.DepthRange.Value = "Standard"; crossover.DepthRange.Value = "LowLevel"; var globalScope = new Scope("Global Scope"); globalScope.Variables.Add(new Core.Variable("Random", twister)); var context = new ExecutionContext(null, problem, globalScope); context = new ExecutionContext(context, crossover, globalScope); stopwatch.Start(); for (int i = 0; i != PopulationSize; ++i) { var parent0 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone(); var scopeParent0 = new Scope(); scopeParent0.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent0)); context.Scope.SubScopes.Add(scopeParent0); var parent1 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone(); var scopeParent1 = new Scope(); scopeParent1.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent1)); context.Scope.SubScopes.Add(scopeParent1); crossover.Execute(context, new CancellationToken()); context.Scope.SubScopes.Remove(scopeParent0); // clean the scope in preparation for the next iteration context.Scope.SubScopes.Remove(scopeParent1); // clean the scope in preparation for the next iteration } stopwatch.Stop(); double msPerCrossover = 2 * stopwatch.ElapsedMilliseconds / (double)PopulationSize; Console.WriteLine("DepthConstrainedCrossover: " + Environment.NewLine + msPerCrossover + " ms per crossover (~" + Math.Round(1000.0 / (msPerCrossover)) + " crossover operations / s)"); foreach (var tree in trees) Util.IsValid(tree); } private static void SemanticSimilarityCrossoverPerformanceTest() { var twister = new MersenneTwister(31415); var dataset = Util.CreateRandomDataset(twister, Rows, Columns); var grammar = new FullFunctionalExpressionGrammar(); var stopwatch = new Stopwatch(); grammar.MaximumFunctionArguments = 0; grammar.MaximumFunctionDefinitions = 0; grammar.MinimumFunctionArguments = 0; grammar.MinimumFunctionDefinitions = 0; var trees = Util.CreateRandomTrees(twister, dataset, grammar, PopulationSize, 1, MaxTreeLength, 0, 0); foreach (ISymbolicExpressionTree tree in trees) { Util.InitTree(tree, twister, new List(dataset.VariableNames)); } var problemData = new RegressionProblemData(dataset, dataset.VariableNames, dataset.VariableNames.Last()); var problem = new SymbolicRegressionSingleObjectiveProblem(); problem.ProblemData = problemData; var interpreter = problem.SymbolicExpressionTreeInterpreter; var crossover = problem.OperatorsParameter.Value.OfType>().First(); var globalScope = new Scope("Global Scope"); globalScope.Variables.Add(new Core.Variable("Random", twister)); var context = new ExecutionContext(null, problem, globalScope); context = new ExecutionContext(context, crossover, globalScope); stopwatch.Start(); for (int i = 0; i != PopulationSize; ++i) { var parent0 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone(); var scopeParent0 = new Scope(); scopeParent0.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent0)); context.Scope.SubScopes.Add(scopeParent0); var parent1 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone(); var scopeParent1 = new Scope(); scopeParent1.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent1)); context.Scope.SubScopes.Add(scopeParent1); crossover.Execute(context, new CancellationToken()); context.Scope.SubScopes.Remove(scopeParent0); // clean the scope in preparation for the next iteration context.Scope.SubScopes.Remove(scopeParent1); // clean the scope in preparation for the next iteration } stopwatch.Stop(); double msPerCrossover = 2 * stopwatch.ElapsedMilliseconds / (double)PopulationSize; Console.WriteLine("SemanticSimilarityCrossover: " + Environment.NewLine + interpreter.EvaluatedSolutions + " evaluations" + Environment.NewLine + msPerCrossover + " ms per crossover (~" + Math.Round(1000.0 / (msPerCrossover)) + " crossover operations / s)"); foreach (var tree in trees) Util.IsValid(tree); } private static void ProbabilisticFunctionalCrossoverPerformanceTest() { var twister = new MersenneTwister(31415); var dataset = Util.CreateRandomDataset(twister, Rows, Columns); var grammar = new FullFunctionalExpressionGrammar(); var stopwatch = new Stopwatch(); grammar.MaximumFunctionArguments = 0; grammar.MaximumFunctionDefinitions = 0; grammar.MinimumFunctionArguments = 0; grammar.MinimumFunctionDefinitions = 0; var trees = Util.CreateRandomTrees(twister, dataset, grammar, PopulationSize, 1, MaxTreeLength, 0, 0); foreach (ISymbolicExpressionTree tree in trees) { Util.InitTree(tree, twister, new List(dataset.VariableNames)); } var problemData = new RegressionProblemData(dataset, dataset.VariableNames, dataset.VariableNames.Last()); var problem = new SymbolicRegressionSingleObjectiveProblem(); problem.ProblemData = problemData; var interpreter = problem.SymbolicExpressionTreeInterpreter; var crossover = problem.OperatorsParameter.Value.OfType>().First(); var globalScope = new Scope("Global Scope"); globalScope.Variables.Add(new Core.Variable("Random", twister)); var context = new ExecutionContext(null, problem, globalScope); context = new ExecutionContext(context, crossover, globalScope); stopwatch.Start(); for (int i = 0; i != PopulationSize; ++i) { var parent0 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone(); var scopeParent0 = new Scope(); scopeParent0.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent0)); context.Scope.SubScopes.Add(scopeParent0); var parent1 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone(); var scopeParent1 = new Scope(); scopeParent1.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent1)); context.Scope.SubScopes.Add(scopeParent1); crossover.Execute(context, new CancellationToken()); context.Scope.SubScopes.Remove(scopeParent0); // clean the scope in preparation for the next iteration context.Scope.SubScopes.Remove(scopeParent1); // clean the scope in preparation for the next iteration } stopwatch.Stop(); double msPerCrossover = 2 * stopwatch.ElapsedMilliseconds / (double)PopulationSize; Console.WriteLine("ProbabilisticFunctionalCrossover: " + Environment.NewLine + interpreter.EvaluatedSolutions + " evaluations" + Environment.NewLine + msPerCrossover + " ms per crossover (~" + Math.Round(1000.0 / (msPerCrossover)) + " crossover operations / s)"); foreach (var tree in trees) Util.IsValid(tree); } private static void DeterministicBestCrossoverPerformanceTest() { var twister = new MersenneTwister(31415); var dataset = Util.CreateRandomDataset(twister, Rows, Columns); var grammar = new FullFunctionalExpressionGrammar(); var stopwatch = new Stopwatch(); grammar.MaximumFunctionArguments = 0; grammar.MaximumFunctionDefinitions = 0; grammar.MinimumFunctionArguments = 0; grammar.MinimumFunctionDefinitions = 0; var trees = Util.CreateRandomTrees(twister, dataset, grammar, PopulationSize, 1, MaxTreeLength, 0, 0); foreach (ISymbolicExpressionTree tree in trees) { Util.InitTree(tree, twister, new List(dataset.VariableNames)); } var problemData = new RegressionProblemData(dataset, dataset.VariableNames, dataset.VariableNames.Last()); var problem = new SymbolicRegressionSingleObjectiveProblem(); problem.ProblemData = problemData; var interpreter = problem.SymbolicExpressionTreeInterpreter; var crossover = problem.OperatorsParameter.Value.OfType>().First(); var globalScope = new Scope("Global Scope"); globalScope.Variables.Add(new Core.Variable("Random", twister)); var context = new ExecutionContext(null, problem, globalScope); context = new ExecutionContext(context, crossover, globalScope); stopwatch.Start(); for (int i = 0; i != PopulationSize; ++i) { var parent0 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone(); var scopeParent0 = new Scope(); scopeParent0.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent0)); context.Scope.SubScopes.Add(scopeParent0); var parent1 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone(); var scopeParent1 = new Scope(); scopeParent1.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent1)); context.Scope.SubScopes.Add(scopeParent1); crossover.Execute(context, new CancellationToken()); context.Scope.SubScopes.Remove(scopeParent0); // clean the scope in preparation for the next iteration context.Scope.SubScopes.Remove(scopeParent1); // clean the scope in preparation for the next iteration } stopwatch.Stop(); double msPerCrossover = 2 * stopwatch.ElapsedMilliseconds / (double)PopulationSize; Console.WriteLine("DeterministicBestCrossover: " + Environment.NewLine + interpreter.EvaluatedSolutions + " evaluations" + Environment.NewLine + msPerCrossover + " ms per crossover (~" + Math.Round(1000.0 / (msPerCrossover)) + " crossover operations / s)"); foreach (var tree in trees) Util.IsValid(tree); } private static void ContextAwareCrossoverPerformanceTest() { var twister = new MersenneTwister(31415); var dataset = Util.CreateRandomDataset(twister, Rows, Columns); var grammar = new FullFunctionalExpressionGrammar(); var stopwatch = new Stopwatch(); grammar.MaximumFunctionArguments = 0; grammar.MaximumFunctionDefinitions = 0; grammar.MinimumFunctionArguments = 0; grammar.MinimumFunctionDefinitions = 0; var trees = Util.CreateRandomTrees(twister, dataset, grammar, PopulationSize, 1, MaxTreeLength, 0, 0); foreach (ISymbolicExpressionTree tree in trees) { Util.InitTree(tree, twister, new List(dataset.VariableNames)); } var problemData = new RegressionProblemData(dataset, dataset.VariableNames, dataset.VariableNames.Last()); var problem = new SymbolicRegressionSingleObjectiveProblem(); problem.ProblemData = problemData; var interpreter = problem.SymbolicExpressionTreeInterpreter; var crossover = problem.OperatorsParameter.Value.OfType>().First(); var globalScope = new Scope("Global Scope"); globalScope.Variables.Add(new Core.Variable("Random", twister)); var context = new ExecutionContext(null, problem, globalScope); context = new ExecutionContext(context, crossover, globalScope); stopwatch.Start(); for (int i = 0; i != PopulationSize; ++i) { var parent0 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone(); var scopeParent0 = new Scope(); scopeParent0.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent0)); context.Scope.SubScopes.Add(scopeParent0); var parent1 = (ISymbolicExpressionTree)trees.SelectRandom(twister).Clone(); var scopeParent1 = new Scope(); scopeParent1.Variables.Add(new Core.Variable(crossover.ParentsParameter.ActualName, parent1)); context.Scope.SubScopes.Add(scopeParent1); crossover.Execute(context, new CancellationToken()); context.Scope.SubScopes.Remove(scopeParent0); // clean the scope in preparation for the next iteration context.Scope.SubScopes.Remove(scopeParent1); // clean the scope in preparation for the next iteration } stopwatch.Stop(); double msPerCrossover = 2 * stopwatch.ElapsedMilliseconds / (double)PopulationSize; Console.WriteLine("ContextAwareCrossover: " + Environment.NewLine + interpreter.EvaluatedSolutions + " evaluations" + Environment.NewLine + msPerCrossover + " ms per crossover (~" + Math.Round(1000.0 / (msPerCrossover)) + " crossover operations / s)"); foreach (var tree in trees) Util.IsValid(tree); } } }