#region License Information /* HeuristicLab * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using HeuristicLab.Common; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification { public class SymbolicClassificationSolutionImpactValuesCalculator : SymbolicDataAnalysisSolutionImpactValuesCalculator { public override double CalculateReplacementValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable rows) { var classificationModel = (ISymbolicClassificationModel)model; var classificationProblemData = (IClassificationProblemData)problemData; return CalculateReplacementValue(node, classificationModel.SymbolicExpressionTree, classificationModel.Interpreter, classificationProblemData.Dataset, rows); } public override double CalculateImpactValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable rows, double originalQuality = double.NaN) { var classificationModel = (ISymbolicClassificationModel)model; var classificationProblemData = (IClassificationProblemData)problemData; var dataset = classificationProblemData.Dataset; var targetClassValues = dataset.GetDoubleValues(classificationProblemData.TargetVariable, rows); OnlineCalculatorError errorState; if (double.IsNaN(originalQuality)) { var originalClassValues = classificationModel.GetEstimatedClassValues(dataset, rows); originalQuality = OnlineAccuracyCalculator.Calculate(targetClassValues, originalClassValues, out errorState); if (errorState != OnlineCalculatorError.None) originalQuality = 0.0; } var replacementValue = CalculateReplacementValue(classificationModel, node, classificationProblemData, rows); var constantNode = new ConstantTreeNode(new Constant()) { Value = replacementValue }; var cloner = new Cloner(); var tempModel = cloner.Clone(classificationModel); var tempModelNode = (ISymbolicExpressionTreeNode)cloner.GetClone(node); var tempModelParentNode = tempModelNode.Parent; int i = tempModelParentNode.IndexOfSubtree(tempModelNode); tempModelParentNode.RemoveSubtree(i); tempModelParentNode.InsertSubtree(i, constantNode); var estimatedClassValues = tempModel.GetEstimatedClassValues(dataset, rows); double newQuality = OnlineAccuracyCalculator.Calculate(targetClassValues, estimatedClassValues, out errorState); if (errorState != OnlineCalculatorError.None) newQuality = 0.0; return originalQuality - newQuality; } } }