#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Text; using HeuristicLab.Core; using HeuristicLab.Operators; using HeuristicLab.Random; using HeuristicLab.Data; using HeuristicLab.Constraints; using HeuristicLab.Functions; using System.Diagnostics; namespace HeuristicLab.StructureIdentification { /// /// Implementation of a homologous one point crossover operator as described in: /// W. B. Langdon and R. Poli. Foundations of Genetic Programming. Springer-Verlag, 2002. /// public class OnePointCrossOver : OperatorBase { public override string Description { get { return @""; } } public OnePointCrossOver() : base() { AddVariableInfo(new VariableInfo("Random", "Pseudo random number generator", typeof(MersenneTwister), VariableKind.In)); AddVariableInfo(new VariableInfo("OperatorLibrary", "The operator library containing all available operators", typeof(GPOperatorLibrary), VariableKind.In)); AddVariableInfo(new VariableInfo("MaxTreeHeight", "The maximal allowed height of the tree", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("MaxTreeSize", "The maximal allowed size (number of nodes) of the tree", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("FunctionTree", "The tree to mutate", typeof(IFunctionTree), VariableKind.In | VariableKind.New)); AddVariableInfo(new VariableInfo("TreeSize", "The size (number of nodes) of the tree", typeof(IntData), VariableKind.New)); AddVariableInfo(new VariableInfo("TreeHeight", "The height of the tree", typeof(IntData), VariableKind.New)); } public override IOperation Apply(IScope scope) { MersenneTwister random = GetVariableValue("Random", scope, true); GPOperatorLibrary opLibrary = GetVariableValue("OperatorLibrary", scope, true); int maxTreeHeight = GetVariableValue("MaxTreeHeight", scope, true).Data; int maxTreeSize = GetVariableValue("MaxTreeSize", scope, true).Data; TreeGardener gardener = new TreeGardener(random, opLibrary); if((scope.SubScopes.Count % 2) != 0) throw new InvalidOperationException("Number of parents is not even"); CompositeOperation initOperations = new CompositeOperation(); int children = scope.SubScopes.Count / 2; for(int i = 0; i < children; i++) { IScope parent1 = scope.SubScopes[0]; scope.RemoveSubScope(parent1); IScope parent2 = scope.SubScopes[0]; scope.RemoveSubScope(parent2); IScope child = new Scope(i.ToString()); IOperation childInitOperation = Cross(gardener, maxTreeSize, maxTreeHeight, scope, random, parent1, parent2, child); initOperations.AddOperation(childInitOperation); scope.AddSubScope(child); } return initOperations; } private IOperation Cross(TreeGardener gardener, int maxTreeSize, int maxTreeHeight, IScope scope, MersenneTwister random, IScope parent1, IScope parent2, IScope child) { IFunctionTree newTree = Cross(gardener, parent1, parent2, random, maxTreeSize, maxTreeHeight); int newTreeSize = newTree.Size; int newTreeHeight = newTree.Height; child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("FunctionTree"), newTree)); child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeSize"), new IntData(newTreeSize))); child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeHeight"), new IntData(newTreeHeight))); // check if the new tree is valid and if the height of is still in the allowed bounds (we are not so strict for the max-size) Debug.Assert(gardener.IsValidTree(newTree) && newTreeHeight <= maxTreeHeight && newTreeSize <= maxTreeSize); return null; } private IFunctionTree Cross(TreeGardener gardener, IScope f, IScope g, MersenneTwister random, int maxTreeSize, int maxTreeHeight) { IFunctionTree tree0 = f.GetVariableValue("FunctionTree", false); int tree0Height = f.GetVariableValue("TreeHeight", false).Data; int tree0Size = f.GetVariableValue("TreeSize", false).Data; IFunctionTree tree1 = g.GetVariableValue("FunctionTree", false); int tree1Height = g.GetVariableValue("TreeHeight", false).Data; int tree1Size = g.GetVariableValue("TreeSize", false).Data; if(tree0Size == 1 && tree1Size == 1) { return CombineTerminals(gardener, tree0, tree1, random); } else { // we are going to insert tree1 into tree0 at a random place so we have to make sure that tree0 is not a terminal // in case both trees are higher than 1 we swap the trees with probability 50% if(tree0Height == 1 || (tree1Height > 1 && random.Next(2) == 0)) { IFunctionTree tmp = tree0; tree0 = tree1; tree1 = tmp; int tmpHeight = tree0Height; tree0Height = tree1Height; tree1Height = tmpHeight; int tmpSize = tree0Size; tree0Size = tree1Size; tree1Size = tmpSize; } List allowedCrossOverPoints = GetCrossOverPoints(null, tree0, tree1); if(allowedCrossOverPoints.Count == 0) { if(random.NextDouble() < 0.5) return tree0; else return tree1; } IFunctionTree[] crossOverPoints = allowedCrossOverPoints[random.Next(allowedCrossOverPoints.Count)]; IFunctionTree parent = crossOverPoints[0]; IFunctionTree replacedBranch = crossOverPoints[1]; IFunctionTree insertedBranch = crossOverPoints[2]; if(parent == null) return insertedBranch; else { int i = 0; while(parent.SubTrees[i] != replacedBranch) i++; parent.RemoveSubTree(i); parent.InsertSubTree(i, insertedBranch); return tree0; } } } private List GetCrossOverPoints(IFunctionTree parent, IFunctionTree tree0, IFunctionTree tree1) { List results = new List(); if(tree0.Function != tree1.Function) return results; int maxArity = Math.Min(tree0.SubTrees.Count, tree1.SubTrees.Count); for(int i = 0; i < maxArity; i++) { results.AddRange(GetCrossOverPoints(tree0, tree0.SubTrees[i], tree1.SubTrees[i])); } if(results.Count == 0) results.Add(new IFunctionTree[] { parent, tree0, tree1 }); return results; } private IFunctionTree CombineTerminals(TreeGardener gardener, IFunctionTree f, IFunctionTree g, MersenneTwister random) { if(random.NextDouble() < 0.5) return f; else return g; } } }