#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Operators;
using HeuristicLab.Functions;
using HeuristicLab.DataAnalysis;
namespace HeuristicLab.StructureIdentification {
public class MCCEvaluator : GPEvaluatorBase {
private double limit;
private double[] original = new double[1];
private double[] estimated = new double[1];
private DoubleData mcc;
public override string Description {
get {
return @"Calculates the matthews correlation coefficient for a given model and class separation threshold";
}
}
public MCCEvaluator()
: base() {
AddVariableInfo(new VariableInfo("ClassSeparation", "The value of separation between negative and positive target classification values (for instance 0.5 if negative=0 and positive=1).", typeof(DoubleData), VariableKind.In));
AddVariableInfo(new VariableInfo("MCC", "The matthews correlation coefficient of the model", typeof(DoubleData), VariableKind.New));
}
public override IOperation Apply(IScope scope) {
mcc = GetVariableValue("MCC", scope, false, false);
if(mcc == null) {
mcc = new DoubleData();
scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("MCC"), mcc));
}
limit = GetVariableValue("ClassSeparation", scope, true).Data;
return base.Apply(scope);
}
public override void Evaluate(int start, int end) {
int nSamples = end - start;
if(estimated.Length != nSamples) {
estimated = new double[nSamples];
original = new double[nSamples];
}
double positive = 0;
double negative = 0;
for(int sample = start; sample < end; sample++) {
double est = GetEstimatedValue(sample);
double orig = GetOriginalValue(sample);
SetOriginalValue(sample, est);
estimated[sample - start] = est;
original[sample - start] = orig;
if(orig >= limit) positive++;
else negative++;
}
Array.Sort(estimated, original);
double best_mcc = -1.0;
double tp = 0;
double fn = positive;
double tn = negative;
double fp = 0;
for(int i = original.Length - 1; i >= 0; i--) {
if(original[i] >= limit) {
tp++; fn--;
} else {
tn--; fp++;
}
double mcc = (tp * tn - fp * fn) / Math.Sqrt(positive * (tp + fn) * (tn + fp) * negative);
if(best_mcc < mcc) {
best_mcc = mcc;
}
}
this.mcc.Data = best_mcc;
}
}
}