Free cookie consent management tool by TermsFeed Policy Generator

source: branches/GrammaticalEvolution/HeuristicLab.Problems.GrammaticalEvolution/Symbolic/GESymbolicRegressionSingleObjectiveProblem.cs @ 10247

Last change on this file since 10247 was 10226, checked in by sawinkle, 11 years ago

#2109:

  • Added file IGESymbolicDataAnalysisProblem.cs to determine, which parameters should be used. => Removed parameters MaximumSymbolicExpressionTreeDepthParameter, MaximumFunctionDefinitionsParameter and MaximumFunctionArgumentsParameter, which are unnecessary for Grammatical Evolution.
  • Adapted the other files to use the interfaces of the new file IGESymbolicDataAnalysisProblem.cs
File size: 6.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Linq;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Encodings.IntegerVectorEncoding;
26using HeuristicLab.Parameters;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28using HeuristicLab.Problems.DataAnalysis;
29using HeuristicLab.Problems.DataAnalysis.Symbolic;
30using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
31
32namespace HeuristicLab.Problems.GrammaticalEvolution {
33  [Item("Grammatical Evolution Symbolic Regression Problem (single objective)", "Represents a single objective symbolic regression problem, implemented in Grammatical Evolution.")]
34  [StorableClass]
35  [Creatable("Problems")]
36  public class GESymbolicRegressionSingleObjectiveProblem : GESymbolicDataAnalysisSingleObjectiveProblem<IRegressionProblemData, IGESymbolicRegressionSingleObjectiveEvaluator, IIntegerVectorCreator>,
37                                                            IRegressionProblem {
38    private const double PunishmentFactor = 10;
39    //private const int InitialMaximumTreeDepth = 8;
40    private const int InitialMaximumTreeLength = 25;
41    private const string EstimationLimitsParameterName = "EstimationLimits";
42    private const string EstimationLimitsParameterDescription = "The limits for the estimated value that can be returned by the symbolic regression model.";
43
44    #region parameter properties
45    public IFixedValueParameter<DoubleLimit> EstimationLimitsParameter {
46      get { return (IFixedValueParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
47    }
48    #endregion
49    #region properties
50    public DoubleLimit EstimationLimits {
51      get { return EstimationLimitsParameter.Value; }
52    }
53    #endregion
54    [StorableConstructor]
55    protected GESymbolicRegressionSingleObjectiveProblem(bool deserializing) : base(deserializing) { }
56    protected GESymbolicRegressionSingleObjectiveProblem(GESymbolicRegressionSingleObjectiveProblem original, Cloner cloner)
57      : base(original, cloner) {
58      RegisterEventHandlers();
59    }
60    public override IDeepCloneable Clone(Cloner cloner) { return new GESymbolicRegressionSingleObjectiveProblem(this, cloner); }
61
62    public GESymbolicRegressionSingleObjectiveProblem()
63      : base(new RegressionProblemData(), new GESymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(), new UniformRandomIntegerVectorCreator()) {
64      Parameters.Add(new FixedValueParameter<DoubleLimit>(EstimationLimitsParameterName, EstimationLimitsParameterDescription));
65
66      EstimationLimitsParameter.Hidden = true;
67
68
69      ApplyLinearScalingParameter.Value.Value = true;
70      Maximization.Value = true;
71      //MaximumSymbolicExpressionTreeDepth.Value = InitialMaximumTreeDepth;
72      MaximumSymbolicExpressionTreeLength.Value = InitialMaximumTreeLength;
73
74      RegisterEventHandlers();
75      ConfigureGrammarSymbols();
76      InitializeOperators();
77      UpdateEstimationLimits();
78    }
79
80    [StorableHook(HookType.AfterDeserialization)]
81    private void AfterDeserialization() {
82      RegisterEventHandlers();
83      // compatibility
84      bool changed = false;
85      if (!Operators.OfType<SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer>().Any()) {
86        Operators.Add(new SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer());
87        changed = true;
88      }
89      if (!Operators.OfType<SymbolicRegressionSingleObjectiveValidationParetoBestSolutionAnalyzer>().Any()) {
90        Operators.Add(new SymbolicRegressionSingleObjectiveValidationParetoBestSolutionAnalyzer());
91        changed = true;
92      }
93      if (changed) {
94        ParameterizeOperators();
95      }
96    }
97
98    private void RegisterEventHandlers() {
99      SymbolicExpressionTreeGrammarParameter.ValueChanged += (o, e) => ConfigureGrammarSymbols();
100    }
101
102    private void ConfigureGrammarSymbols() {
103      var grammar = SymbolicExpressionTreeGrammar as TypeCoherentExpressionGrammar;
104      if (grammar != null) grammar.ConfigureAsDefaultRegressionGrammar();
105    }
106
107    private void InitializeOperators() {
108      Operators.Add(new SymbolicRegressionSingleObjectiveTrainingBestSolutionAnalyzer());
109      Operators.Add(new SymbolicRegressionSingleObjectiveValidationBestSolutionAnalyzer());
110      Operators.Add(new SymbolicRegressionSingleObjectiveOverfittingAnalyzer());
111      Operators.Add(new SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer());
112      Operators.Add(new SymbolicRegressionSingleObjectiveValidationParetoBestSolutionAnalyzer());
113
114      ParameterizeOperators();
115    }
116
117    private void UpdateEstimationLimits() {
118      if (ProblemData.TrainingIndices.Any()) {
119        var targetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToList();
120        var mean = targetValues.Average();
121        var range = targetValues.Max() - targetValues.Min();
122        EstimationLimits.Upper = mean + PunishmentFactor * range;
123        EstimationLimits.Lower = mean - PunishmentFactor * range;
124      } else {
125        EstimationLimits.Upper = double.MaxValue;
126        EstimationLimits.Lower = double.MinValue;
127      }
128    }
129
130    protected override void OnProblemDataChanged() {
131      base.OnProblemDataChanged();
132      UpdateEstimationLimits();
133    }
134
135    protected override void ParameterizeOperators() {
136      base.ParameterizeOperators();
137      if (Parameters.ContainsKey(EstimationLimitsParameterName)) {
138        var operators = Parameters.OfType<IValueParameter>().Select(p => p.Value).OfType<IOperator>().Union(Operators);
139        foreach (var op in operators.OfType<ISymbolicDataAnalysisBoundedOperator>()) {
140          op.EstimationLimitsParameter.ActualName = EstimationLimitsParameter.Name;
141        }
142      }
143    }
144  }
145}
Note: See TracBrowser for help on using the repository browser.