#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.IntegerVectorEncoding;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Random;
namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment {
[Item("DiscreteLocationCrossover", "Combines the assignment to locations from various parents.")]
[StorableClass]
public class DiscreteLocationCrossover : GQAPCrossover, ICapacitiesAwareGQAPOperator {
public ILookupParameter CapacitiesParameter {
get { return (ILookupParameter)Parameters["Capacities"]; }
}
[StorableConstructor]
protected DiscreteLocationCrossover(bool deserializing) : base(deserializing) { }
protected DiscreteLocationCrossover(DiscreteLocationCrossover original, Cloner cloner)
: base(original, cloner) { }
public DiscreteLocationCrossover()
: base() {
Parameters.Add(new LookupParameter("Capacities", GeneralizedQuadraticAssignmentProblem.CapacitiesDescription));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new DiscreteLocationCrossover(this, cloner);
}
public static IntegerVector Apply(IRandom random, ItemArray parents, DoubleArray capacities) {
var groupedLocations = parents
.Select(p => p.Select((value, index) => new { Equipment = index, Location = value })
.GroupBy(x => x.Location)
.ToDictionary(x => x.Key, y => y.AsEnumerable())).ToArray();
IntegerVector child = new IntegerVector(parents[0].Length);
HashSet remainingEquipment = new HashSet(Enumerable.Range(0, child.Length));
int locations = capacities.Length;
foreach (var i in Enumerable.Range(0, locations).Shuffle(random)) {
int parent = random.Next(parents.Length);
if (!groupedLocations[parent].ContainsKey(i)) {
int tmp = parent;
do {
tmp = (tmp + 1) % parents.Length;
} while (tmp != parent && !groupedLocations[tmp].ContainsKey(i));
if (parent == tmp) continue;
else parent = tmp;
}
foreach (var item in groupedLocations[parent][i]) {
if (remainingEquipment.Contains(item.Equipment)) {
child[item.Equipment] = i;
remainingEquipment.Remove(item.Equipment);
}
}
}
foreach (var equipment in remainingEquipment) {
int parent = random.Next(parents.Length);
child[equipment] = parents[parent][equipment];
}
return child;
}
protected override IntegerVector Cross(IRandom random, ItemArray parents) {
return Apply(random, parents, CapacitiesParameter.ActualValue);
}
}
}