#region License Information /* HeuristicLab * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.IntegerVectorEncoding; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Random; namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment { [Item("CordeauCrossover", "The merge procedure that is described in Cordeau, J.-F., Gaudioso, M., Laporte, G., Moccia, L. 2006. A memetic heuristic for the generalized quadratic assignment problem. INFORMS Journal on Computing, 18, pp. 433–443.")] [StorableClass] public class CordeauCrossover : GQAPCrossover, IQualitiesAwareGQAPOperator, IProblemInstanceAwareGQAPOperator { public ILookupParameter MaximizationParameter { get { return (ILookupParameter)Parameters["Maximization"]; } } public IScopeTreeLookupParameter QualityParameter { get { return (IScopeTreeLookupParameter)Parameters["Quality"]; } } public IScopeTreeLookupParameter EvaluationParameter { get { return (IScopeTreeLookupParameter)Parameters["Evaluation"]; } } public ILookupParameter EvaluatedSolutionsParameter { get { return (ILookupParameter)Parameters["EvaluatedSolutions"]; } } [StorableConstructor] protected CordeauCrossover(bool deserializing) : base(deserializing) { } protected CordeauCrossover(CordeauCrossover original, Cloner cloner) : base(original, cloner) { } public CordeauCrossover() : base() { Parameters.Add(new LookupParameter("Maximization", "")); Parameters.Add(new ScopeTreeLookupParameter("Quality", "The quality of the parents", 1)); Parameters.Add(new ScopeTreeLookupParameter("Evaluation", GQAP.EvaluationDescription, 1)); Parameters.Add(new LookupParameter("EvaluatedSolutions", "The number of evaluated solutions.")); } public override IDeepCloneable Clone(Cloner cloner) { return new CordeauCrossover(this, cloner); } public static IntegerVector Apply(IRandom random, bool maximization, IntegerVector parent1, DoubleValue quality1, IntegerVector parent2, DoubleValue quality2, GQAPInstance problemInstance, IntValue evaluatedSolutions) { var distances = problemInstance.Distances; var capacities = problemInstance.Capacities; var demands = problemInstance.Demands; var medianDistances = Enumerable.Range(0, distances.Rows).Select(x => distances.GetRow(x).Median()).ToArray(); int m = capacities.Length; int n = demands.Length; bool onefound = false; double fbest, fbestAttempt = maximization ? double.MinValue : double.MaxValue; IntegerVector bestAttempt = null; IntegerVector result = null; fbest = quality1.Value; if (maximization && quality1.Value < quality2.Value || !maximization && quality1.Value > quality2.Value) { var temp = parent1; parent1 = parent2; parent2 = temp; fbest = quality2.Value; } var cap = new double[m]; for (var i = 0; i < m; i++) { int unassigned; Array.Clear(cap, 0, m); var child = Merge(parent1, parent2, distances, demands, medianDistances, m, n, i, cap, out unassigned); if (unassigned > 0) TryRandomAssignment(random, demands, capacities, m, n, cap, child, ref unassigned); if (unassigned == 0) { var childFit = problemInstance.ToSingleObjective(problemInstance.Evaluate(child)); evaluatedSolutions.Value++; if (maximization && childFit >= fbest || !maximization && childFit <= fbest) { fbest = childFit; result = child; onefound = true; } if (!onefound && (maximization && fbestAttempt < childFit || !maximization && fbestAttempt > childFit)) { bestAttempt = child; fbestAttempt = childFit; } } } if (!onefound) { var i = random.Next(m); int unassigned; Array.Clear(cap, 0, m); var child = Merge(parent1, parent2, distances, demands, medianDistances, m, n, i, cap, out unassigned); RandomAssignment(random, demands, capacities, m, n, cap, child, ref unassigned); var childFit = problemInstance.ToSingleObjective(problemInstance.Evaluate(child)); evaluatedSolutions.Value++; if (childFit < fbest) { fbest = childFit; result = child; onefound = true; } if (!onefound && (maximization && fbestAttempt < childFit || !maximization && fbestAttempt > childFit)) { bestAttempt = child; fbestAttempt = childFit; } } /*if (tabufix(&son, 0.5 * sqrt(n * m), round(n * m * log10(n)), &tabufix_it)) { solution_cost(&son); if (son.cost < fbest) { fbest = son.cost; *sptr = son; onefound = TRUE; merge_fixed++; }*/ return result ?? bestAttempt; } private static IntegerVector Merge(IntegerVector p1, IntegerVector p2, DoubleMatrix distances, DoubleArray demands, double[] mediana, int m, int n, int i, double[] cap, out int unassigned) { unassigned = n; var child = new IntegerVector(n); for (var k = 0; k < n; k++) { child[k] = -1; var ik1 = p1[k]; var ik2 = p2[k]; if (distances[i, ik1] < mediana[i]) { child[k] = ik1; cap[ik1] += demands[k]; unassigned--; } else if (distances[i, ik2] > mediana[i]) { child[k] = ik2; cap[ik2] += demands[k]; unassigned--; }; } return child; } private static bool TryRandomAssignment(IRandom random, DoubleArray demands, DoubleArray capacities, int m, int n, double[] cap, IntegerVector child, ref int unassigned) { var unbiasedOrder = Enumerable.Range(0, n).Shuffle(random).ToList(); for (var idx = 0; idx < n; idx++) { var k = unbiasedOrder[idx]; if (child[k] < 0) { var feasibleInserts = Enumerable.Range(0, m) .Select((v, i) => new { Pos = i, Slack = capacities[i] - cap[i] }) .Where(x => x.Slack >= demands[k]).ToList(); if (feasibleInserts.Count == 0) return false; var j = feasibleInserts.SampleRandom(random).Pos; child[k] = j; cap[j] += demands[k]; unassigned--; } } return true; } private static void RandomAssignment(IRandom random, DoubleArray demands, DoubleArray capacities, int m, int n, double[] cap, IntegerVector child, ref int unassigned) { for (var k = 0; k < n; k++) { if (child[k] < 0) { var j = random.Next(m); child[k] = j; cap[j] += demands[k]; unassigned--; } } } protected override IntegerVector Cross(IRandom random, ItemArray parents, GQAPInstance problemInstance) { if (parents == null) throw new ArgumentNullException("parents"); if (parents.Length != 2) throw new ArgumentException(Name + " works only with exactly two parents."); var qualities = QualityParameter.ActualValue; return Apply(random, MaximizationParameter.ActualValue.Value, parents[0], qualities[0], parents[1], qualities[1], problemInstance, EvaluatedSolutionsParameter.ActualValue); } } }