#region License Information
/* HeuristicLab
* Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis {
///
/// Represents regression solutions that contain an ensemble of multiple regression models
///
[StorableClass]
[Item("RegressionEnsembleModel", "A regression model that contains an ensemble of multiple regression models")]
public class RegressionEnsembleModel : NamedItem, IRegressionEnsembleModel {
private List models;
public IEnumerable Models {
get { return new List(models); }
}
[Storable(Name = "Models")]
private IEnumerable StorableModels {
get { return models; }
set { models = value.ToList(); }
}
#region backwards compatiblity 3.3.5
[Storable(Name = "models", AllowOneWay = true)]
private List OldStorableModels {
set { models = value; }
}
#endregion
[StorableConstructor]
protected RegressionEnsembleModel(bool deserializing) : base(deserializing) { }
protected RegressionEnsembleModel(RegressionEnsembleModel original, Cloner cloner)
: base(original, cloner) {
this.models = original.Models.Select(m => cloner.Clone(m)).ToList();
}
public RegressionEnsembleModel(IEnumerable models)
: base() {
this.name = ItemName;
this.description = ItemDescription;
this.models = new List(models);
}
public override IDeepCloneable Clone(Cloner cloner) {
return new RegressionEnsembleModel(this, cloner);
}
#region IRegressionEnsembleModel Members
public void Add(IRegressionModel model) {
models.Add(model);
}
public void Remove(IRegressionModel model) {
models.Remove(model);
}
public IEnumerable> GetEstimatedValueVectors(Dataset dataset, IEnumerable rows) {
var estimatedValuesEnumerators = (from model in models
select model.GetEstimatedValues(dataset, rows).GetEnumerator())
.ToList();
while (estimatedValuesEnumerators.All(en => en.MoveNext())) {
yield return from enumerator in estimatedValuesEnumerators
select enumerator.Current;
}
}
#endregion
#region IRegressionModel Members
public IEnumerable GetEstimatedValues(Dataset dataset, IEnumerable rows) {
foreach (var estimatedValuesVector in GetEstimatedValueVectors(dataset, rows)) {
yield return estimatedValuesVector.Average();
}
}
public RegressionEnsembleSolution CreateRegressionSolution(IRegressionProblemData problemData) {
return new RegressionEnsembleSolution(this.Models, problemData);
}
IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
return CreateRegressionSolution(problemData);
}
#endregion
}
}