#region License Information
/* HeuristicLab
* Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis {
///
/// Represents a classification data analysis solution
///
[StorableClass]
public class ClassificationSolution : DataAnalysisSolution, IClassificationSolution {
private const string TrainingAccuracyResultName = "Accuracy (training)";
private const string TestAccuracyResultName = "Accuracy (test)";
public new IClassificationModel Model {
get { return (IClassificationModel)base.Model; }
protected set { base.Model = value; }
}
public new IClassificationProblemData ProblemData {
get { return (IClassificationProblemData)base.ProblemData; }
protected set { base.ProblemData = value; }
}
public double TrainingAccuracy {
get { return ((DoubleValue)this[TrainingAccuracyResultName].Value).Value; }
private set { ((DoubleValue)this[TrainingAccuracyResultName].Value).Value = value; }
}
public double TestAccuracy {
get { return ((DoubleValue)this[TestAccuracyResultName].Value).Value; }
private set { ((DoubleValue)this[TestAccuracyResultName].Value).Value = value; }
}
[StorableConstructor]
protected ClassificationSolution(bool deserializing) : base(deserializing) { }
protected ClassificationSolution(ClassificationSolution original, Cloner cloner)
: base(original, cloner) {
}
public ClassificationSolution(IClassificationModel model, IClassificationProblemData problemData)
: base(model, problemData) {
Add(new Result(TrainingAccuracyResultName, "Accuracy of the model on the training partition (percentage of correctly classified instances).", new PercentValue()));
Add(new Result(TestAccuracyResultName, "Accuracy of the model on the test partition (percentage of correctly classified instances).", new PercentValue()));
CalculateResults();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new ClassificationSolution(this, cloner);
}
protected override void RecalculateResults() {
CalculateResults();
}
private void CalculateResults() {
double[] estimatedTrainingClassValues = EstimatedTrainingClassValues.ToArray(); // cache values
IEnumerable originalTrainingClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes);
double[] estimatedTestClassValues = EstimatedTestClassValues.ToArray(); // cache values
IEnumerable originalTestClassValues = ProblemData.Dataset.GetEnumeratedVariableValues(ProblemData.TargetVariable, ProblemData.TestIndizes);
OnlineCalculatorError errorState;
double trainingAccuracy = OnlineAccuracyCalculator.Calculate(estimatedTrainingClassValues, originalTrainingClassValues, out errorState);
if (errorState != OnlineCalculatorError.None) trainingAccuracy = double.NaN;
double testAccuracy = OnlineAccuracyCalculator.Calculate(estimatedTestClassValues, originalTestClassValues, out errorState);
if (errorState != OnlineCalculatorError.None) testAccuracy = double.NaN;
TrainingAccuracy = trainingAccuracy;
TestAccuracy = testAccuracy;
}
public virtual IEnumerable EstimatedClassValues {
get {
return GetEstimatedClassValues(Enumerable.Range(0, ProblemData.Dataset.Rows));
}
}
public virtual IEnumerable EstimatedTrainingClassValues {
get {
return GetEstimatedClassValues(ProblemData.TrainingIndizes);
}
}
public virtual IEnumerable EstimatedTestClassValues {
get {
return GetEstimatedClassValues(ProblemData.TestIndizes);
}
}
public virtual IEnumerable GetEstimatedClassValues(IEnumerable rows) {
return Model.GetEstimatedClassValues(ProblemData.Dataset, rows);
}
}
}