#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
namespace HeuristicLab.Problems.Instances.DataAnalysis {
public class RationalPolynomialThreeDimensional : ArtificialRegressionDataDescriptor {
public override string Name { get { return "Vladislavleva-5 F5(X1, X2, X3) = 30 * ((X1 - 1) * (X3 -1)) / (X2² * (X1 - 10))"; } }
public override string Description {
get {
return "Paper: Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming " + Environment.NewLine
+ "Authors: Ekaterina J. Vladislavleva, Member, IEEE, Guido F. Smits, Member, IEEE, and Dick den Hertog" + Environment.NewLine
+ "Function: F5(X1, X2, X3) = 30 * ((X1 - 1) * (X3 -1)) / (X2² * (X1 - 10))" + Environment.NewLine
+ "Training Data: 300 points X1, X3 = Rand(0.05, 2), X2 = Rand(1, 2)" + Environment.NewLine
+ "Test Data: 2701 points X1, X3 = (-0.05:0.15:2.1), X2 = (0.95:0.1:2.05)" + Environment.NewLine
+ "Function Set: +, -, *, /, square, x^eps, x + eps, x * eps";
}
}
protected override string TargetVariable { get { return "Y"; } }
protected override string[] InputVariables { get { return new string[] { "X1", "X2", "X3", "Y" }; } }
protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3" }; } }
protected override int TrainingPartitionStart { get { return 0; } }
protected override int TrainingPartitionEnd { get { return 300; } }
protected override int TestPartitionStart { get { return 1000; } }
protected override int TestPartitionEnd { get { return 3700; } }
protected override List> GenerateValues() {
List> data = new List>();
int n = 1000;
data.Add(ValueGenerator.GenerateUniformDistributedValues(n, 0.05, 2).ToList());
data.Add(ValueGenerator.GenerateUniformDistributedValues(n, 1, 2).ToList());
data.Add(ValueGenerator.GenerateUniformDistributedValues(n, 0.05, 2).ToList());
List> testData = new List>() {
ValueGenerator.GenerateSteps(-0.05, 2.1, 0.15).ToList(),
ValueGenerator.GenerateSteps( 0.95, 2.05, 0.1).ToList(),
ValueGenerator.GenerateSteps(-0.05, 2.1, 0.15).ToList()
};
var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList>();
for (int i = 0; i < AllowedInputVariables.Count(); i++) {
data[i].AddRange(combinations[i]);
}
double x1, x2, x3;
List results = new List();
for (int i = 0; i < data[0].Count; i++) {
x1 = data[0][i];
x2 = data[1][i];
x3 = data[2][i];
results.Add(30 * ((x1 - 1) * (x3 - 1)) / (Math.Pow(x2, 2) * (x1 - 10)));
}
data.Add(results);
return data;
}
}
}