#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
namespace HeuristicLab.Problems.Instances.DataAnalysis {
public class KeijzerFunctionSix : ArtificialRegressionDataDescriptor {
public override string Name { get { return "Keijzer 6 f(x) = (30 * x * z) / ((x - 10) * y^2)"; } }
public override string Description {
get {
return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine
+ "Authors: Maarten Keijzer" + Environment.NewLine
+ "Function: f(x) = (30 * x * z) / ((x - 10) * y^2)" + Environment.NewLine
+ "range(train): 1000 points x,z = rnd(-1, 1), y = rnd(1, 2)" + Environment.NewLine
+ "range(test): 10000 points x,z = rnd(-1, 1), y = rnd(1, 2)" + Environment.NewLine
+ "Function Set: x + y, x * y, 1/x, -x, sqrt(x)";
}
}
protected override string TargetVariable { get { return "F"; } }
protected override string[] InputVariables { get { return new string[] { "X", "Y", "Z", "F" }; } }
protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y", "Z" }; } }
protected override int TrainingPartitionStart { get { return 0; } }
protected override int TrainingPartitionEnd { get { return 1000; } }
protected override int TestPartitionStart { get { return 1000; } }
protected override int TestPartitionEnd { get { return 11000; } }
protected override List> GenerateValues() {
List> data = new List>();
data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -1, 1).ToList());
data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, 1, 2).ToList());
data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -1, 1).ToList());
double x, y, z;
List results = new List();
for (int i = 0; i < data[0].Count; i++) {
x = data[0][i];
y = data[1][i];
z = data[2][i];
results.Add((30 * x * z) / ((x - 10) * Math.Pow(y, 2)));
}
data.Add(results);
return data;
}
}
}