#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
namespace HeuristicLab.Problems.Instances.DataAnalysis {
public class KeijzerFunctionFourteen : ArtificialRegressionDataDescriptor {
public override string Name { get { return "Keijzer 14 f(x, y) = 6 * sin(x) * cos(y)"; } }
public override string Description {
get {
return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine
+ "Authors: Maarten Keijzer" + Environment.NewLine
+ "Function: f(x, y) = 6 * sin(x) * cos(y)" + Environment.NewLine
+ "range(train): 20 Train cases x,y = rnd(-3, 3)" + Environment.NewLine
+ "range(test): x,y = [-3:0.01:3]" + Environment.NewLine
+ "Function Set: x + y, x * y, 1/x, -x, sqrt(x)" + Environment.NewLine + Environment.NewLine
+ "Note: Test partition has been adjusted to only 100 random uniformly distributed test cases in the intercal [-3, 3] (not ca. 360000 as described) "
+ ", but 5000 cases are created";
}
}
protected override string TargetVariable { get { return "F"; } }
protected override string[] InputVariables { get { return new string[] { "X", "Y", "F" }; } }
protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } }
protected override int TrainingPartitionStart { get { return 0; } }
protected override int TrainingPartitionEnd { get { return 20; } }
protected override int TestPartitionStart { get { return 2500; } }
protected override int TestPartitionEnd { get { return 5000; } }
protected override List> GenerateValues() {
List> data = new List>();
for (int i = 0; i < AllowedInputVariables.Count(); i++) {
data.Add(ValueGenerator.GenerateUniformDistributedValues(5000, -3, 3).ToList());
}
double x, y;
List results = new List();
for (int i = 0; i < data[0].Count; i++) {
x = data[0][i];
y = data[1][i];
results.Add(6 * Math.Sin(x) * Math.Cos(y));
}
data.Add(results);
return data;
}
}
}