#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Collections; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis { /// /// Represents regression solutions that contain an ensemble of multiple regression models /// [StorableClass] [Item("Regression Ensemble Solution", "A regression solution that contains an ensemble of multiple regression models")] [Creatable("Data Analysis - Ensembles")] public sealed class RegressionEnsembleSolution : RegressionSolution, IRegressionEnsembleSolution { private readonly Dictionary trainingEvaluationCache = new Dictionary(); private readonly Dictionary testEvaluationCache = new Dictionary(); public new IRegressionEnsembleModel Model { get { return (IRegressionEnsembleModel)base.Model; } } public new RegressionEnsembleProblemData ProblemData { get { return (RegressionEnsembleProblemData)base.ProblemData; } set { base.ProblemData = value; } } private readonly ItemCollection regressionSolutions; public IItemCollection RegressionSolutions { get { return regressionSolutions; } } [Storable] private readonly Dictionary trainingPartitions; [Storable] private readonly Dictionary testPartitions; [StorableConstructor] private RegressionEnsembleSolution(bool deserializing) : base(deserializing) { regressionSolutions = new ItemCollection(); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { foreach (var model in Model.Models) { IRegressionProblemData problemData = (IRegressionProblemData)ProblemData.Clone(); problemData.TrainingPartition.Start = trainingPartitions[model].Start; problemData.TrainingPartition.End = trainingPartitions[model].End; problemData.TestPartition.Start = testPartitions[model].Start; problemData.TestPartition.End = testPartitions[model].End; regressionSolutions.Add(model.CreateRegressionSolution(problemData)); } RegisterRegressionSolutionsEventHandler(); } private RegressionEnsembleSolution(RegressionEnsembleSolution original, Cloner cloner) : base(original, cloner) { trainingPartitions = new Dictionary(); testPartitions = new Dictionary(); foreach (var pair in original.trainingPartitions) { trainingPartitions[cloner.Clone(pair.Key)] = cloner.Clone(pair.Value); } foreach (var pair in original.testPartitions) { testPartitions[cloner.Clone(pair.Key)] = cloner.Clone(pair.Value); } trainingEvaluationCache = new Dictionary(original.ProblemData.TrainingIndices.Count()); testEvaluationCache = new Dictionary(original.ProblemData.TestIndices.Count()); regressionSolutions = cloner.Clone(original.regressionSolutions); RegisterRegressionSolutionsEventHandler(); } public RegressionEnsembleSolution() : base(new RegressionEnsembleModel(), RegressionEnsembleProblemData.EmptyProblemData) { trainingPartitions = new Dictionary(); testPartitions = new Dictionary(); regressionSolutions = new ItemCollection(); RegisterRegressionSolutionsEventHandler(); } public RegressionEnsembleSolution(IRegressionProblemData problemData) : this(Enumerable.Empty(), problemData) { } public RegressionEnsembleSolution(IEnumerable models, IRegressionProblemData problemData) : this(models, problemData, models.Select(m => (IntRange)problemData.TrainingPartition.Clone()), models.Select(m => (IntRange)problemData.TestPartition.Clone()) ) { } public RegressionEnsembleSolution(IEnumerable models, IRegressionProblemData problemData, IEnumerable trainingPartitions, IEnumerable testPartitions) : base(new RegressionEnsembleModel(Enumerable.Empty()), new RegressionEnsembleProblemData(problemData)) { this.trainingPartitions = new Dictionary(); this.testPartitions = new Dictionary(); this.regressionSolutions = new ItemCollection(); List solutions = new List(); var modelEnumerator = models.GetEnumerator(); var trainingPartitionEnumerator = trainingPartitions.GetEnumerator(); var testPartitionEnumerator = testPartitions.GetEnumerator(); while (modelEnumerator.MoveNext() & trainingPartitionEnumerator.MoveNext() & testPartitionEnumerator.MoveNext()) { var p = (IRegressionProblemData)problemData.Clone(); p.TrainingPartition.Start = trainingPartitionEnumerator.Current.Start; p.TrainingPartition.End = trainingPartitionEnumerator.Current.End; p.TestPartition.Start = testPartitionEnumerator.Current.Start; p.TestPartition.End = testPartitionEnumerator.Current.End; solutions.Add(modelEnumerator.Current.CreateRegressionSolution(p)); } if (modelEnumerator.MoveNext() | trainingPartitionEnumerator.MoveNext() | testPartitionEnumerator.MoveNext()) { throw new ArgumentException(); } trainingEvaluationCache = new Dictionary(problemData.TrainingIndices.Count()); testEvaluationCache = new Dictionary(problemData.TestIndices.Count()); RegisterRegressionSolutionsEventHandler(); regressionSolutions.AddRange(solutions); } public override IDeepCloneable Clone(Cloner cloner) { return new RegressionEnsembleSolution(this, cloner); } private void RegisterRegressionSolutionsEventHandler() { regressionSolutions.ItemsAdded += new CollectionItemsChangedEventHandler(regressionSolutions_ItemsAdded); regressionSolutions.ItemsRemoved += new CollectionItemsChangedEventHandler(regressionSolutions_ItemsRemoved); regressionSolutions.CollectionReset += new CollectionItemsChangedEventHandler(regressionSolutions_CollectionReset); } protected override void RecalculateResults() { CalculateResults(); } #region Evaluation public override IEnumerable EstimatedTrainingValues { get { var rows = ProblemData.TrainingIndices; var rowsToEvaluate = rows.Except(trainingEvaluationCache.Keys); var rowsEnumerator = rowsToEvaluate.GetEnumerator(); var valuesEnumerator = GetEstimatedValues(rowsToEvaluate, (r, m) => RowIsTrainingForModel(r, m) && !RowIsTestForModel(r, m)).GetEnumerator(); while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) { trainingEvaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current); } return rows.Select(row => trainingEvaluationCache[row]); } } public override IEnumerable EstimatedTestValues { get { var rows = ProblemData.TestIndices; var rowsToEvaluate = rows.Except(testEvaluationCache.Keys); var rowsEnumerator = rowsToEvaluate.GetEnumerator(); var valuesEnumerator = GetEstimatedValues(rowsToEvaluate, RowIsTestForModel).GetEnumerator(); while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) { testEvaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current); } return rows.Select(row => testEvaluationCache[row]); } } private IEnumerable GetEstimatedValues(IEnumerable rows, Func modelSelectionPredicate) { var estimatedValuesEnumerators = (from model in Model.Models select new { Model = model, EstimatedValuesEnumerator = model.GetEstimatedValues(ProblemData.Dataset, rows).GetEnumerator() }) .ToList(); var rowsEnumerator = rows.GetEnumerator(); // aggregate to make sure that MoveNext is called for all enumerators while (rowsEnumerator.MoveNext() & estimatedValuesEnumerators.Select(en => en.EstimatedValuesEnumerator.MoveNext()).Aggregate(true, (acc, b) => acc & b)) { int currentRow = rowsEnumerator.Current; var selectedEnumerators = from pair in estimatedValuesEnumerators where modelSelectionPredicate(currentRow, pair.Model) select pair.EstimatedValuesEnumerator; yield return AggregateEstimatedValues(selectedEnumerators.Select(x => x.Current)); } } private bool RowIsTrainingForModel(int currentRow, IRegressionModel model) { return trainingPartitions == null || !trainingPartitions.ContainsKey(model) || (trainingPartitions[model].Start <= currentRow && currentRow < trainingPartitions[model].End); } private bool RowIsTestForModel(int currentRow, IRegressionModel model) { return testPartitions == null || !testPartitions.ContainsKey(model) || (testPartitions[model].Start <= currentRow && currentRow < testPartitions[model].End); } public override IEnumerable GetEstimatedValues(IEnumerable rows) { var rowsToEvaluate = rows.Except(evaluationCache.Keys); var rowsEnumerator = rowsToEvaluate.GetEnumerator(); var valuesEnumerator = (from xs in GetEstimatedValueVectors(ProblemData.Dataset, rowsToEvaluate) select AggregateEstimatedValues(xs)) .GetEnumerator(); while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) { evaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current); } return rows.Select(row => evaluationCache[row]); } public IEnumerable> GetEstimatedValueVectors(Dataset dataset, IEnumerable rows) { if (!Model.Models.Any()) yield break; var estimatedValuesEnumerators = (from model in Model.Models select model.GetEstimatedValues(dataset, rows).GetEnumerator()) .ToList(); while (estimatedValuesEnumerators.All(en => en.MoveNext())) { yield return from enumerator in estimatedValuesEnumerators select enumerator.Current; } } private double AggregateEstimatedValues(IEnumerable estimatedValues) { // return trimean var orderdValues = estimatedValues .Where(x => !double.IsNaN(x)) .DefaultIfEmpty(0.0) .OrderBy(x => x) .ToArray(); return (orderdValues[(int)Math.Floor(orderdValues.Length * 0.25)] + orderdValues[(int)Math.Floor(orderdValues.Length * 0.75)]) / 2.0; } #endregion protected override void OnProblemDataChanged() { trainingEvaluationCache.Clear(); testEvaluationCache.Clear(); evaluationCache.Clear(); IRegressionProblemData problemData = new RegressionProblemData(ProblemData.Dataset, ProblemData.AllowedInputVariables, ProblemData.TargetVariable); problemData.TrainingPartition.Start = ProblemData.TrainingPartition.Start; problemData.TrainingPartition.End = ProblemData.TrainingPartition.End; problemData.TestPartition.Start = ProblemData.TestPartition.Start; problemData.TestPartition.End = ProblemData.TestPartition.End; foreach (var solution in RegressionSolutions) { if (solution is RegressionEnsembleSolution) solution.ProblemData = ProblemData; else solution.ProblemData = problemData; } foreach (var trainingPartition in trainingPartitions.Values) { trainingPartition.Start = ProblemData.TrainingPartition.Start; trainingPartition.End = ProblemData.TrainingPartition.End; } foreach (var testPartition in testPartitions.Values) { testPartition.Start = ProblemData.TestPartition.Start; testPartition.End = ProblemData.TestPartition.End; } base.OnProblemDataChanged(); } public void AddRegressionSolutions(IEnumerable solutions) { regressionSolutions.AddRange(solutions); trainingEvaluationCache.Clear(); testEvaluationCache.Clear(); evaluationCache.Clear(); } public void RemoveRegressionSolutions(IEnumerable solutions) { regressionSolutions.RemoveRange(solutions); trainingEvaluationCache.Clear(); testEvaluationCache.Clear(); evaluationCache.Clear(); } private void regressionSolutions_ItemsAdded(object sender, CollectionItemsChangedEventArgs e) { foreach (var solution in e.Items) AddRegressionSolution(solution); RecalculateResults(); } private void regressionSolutions_ItemsRemoved(object sender, CollectionItemsChangedEventArgs e) { foreach (var solution in e.Items) RemoveRegressionSolution(solution); RecalculateResults(); } private void regressionSolutions_CollectionReset(object sender, CollectionItemsChangedEventArgs e) { foreach (var solution in e.OldItems) RemoveRegressionSolution(solution); foreach (var solution in e.Items) AddRegressionSolution(solution); RecalculateResults(); } private void AddRegressionSolution(IRegressionSolution solution) { if (Model.Models.Contains(solution.Model)) throw new ArgumentException(); Model.Add(solution.Model); trainingPartitions[solution.Model] = solution.ProblemData.TrainingPartition; testPartitions[solution.Model] = solution.ProblemData.TestPartition; trainingEvaluationCache.Clear(); testEvaluationCache.Clear(); evaluationCache.Clear(); } private void RemoveRegressionSolution(IRegressionSolution solution) { if (!Model.Models.Contains(solution.Model)) throw new ArgumentException(); Model.Remove(solution.Model); trainingPartitions.Remove(solution.Model); testPartitions.Remove(solution.Model); trainingEvaluationCache.Clear(); testEvaluationCache.Clear(); evaluationCache.Clear(); } } }