1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
31 | /// <summary>
|
---|
32 | /// Represents a nearest neighbour model for regression and classification
|
---|
33 | /// </summary>
|
---|
34 | [StorableClass]
|
---|
35 | [Item("SymbolicNearestNeighbourClassificationModel", "Represents a nearest neighbour model for symbolic classification.")]
|
---|
36 | public sealed class SymbolicNearestNeighbourClassificationModel : SymbolicClassificationModel {
|
---|
37 |
|
---|
38 | [Storable]
|
---|
39 | private int k;
|
---|
40 | [Storable]
|
---|
41 | private List<KeyValuePair<double, double>> trainedTargetPair;
|
---|
42 |
|
---|
43 | [StorableConstructor]
|
---|
44 | private SymbolicNearestNeighbourClassificationModel(bool deserializing) : base(deserializing) { }
|
---|
45 | private SymbolicNearestNeighbourClassificationModel(SymbolicNearestNeighbourClassificationModel original, Cloner cloner)
|
---|
46 | : base(original, cloner) {
|
---|
47 | k = original.k;
|
---|
48 | trainedTargetPair = new List<KeyValuePair<double, double>>(original.trainedTargetPair);
|
---|
49 | }
|
---|
50 | public SymbolicNearestNeighbourClassificationModel(int k, ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue)
|
---|
51 | : base(tree, interpreter, lowerEstimationLimit, upperEstimationLimit) {
|
---|
52 | this.k = k;
|
---|
53 | this.trainedTargetPair = new List<KeyValuePair<double, double>>();
|
---|
54 | }
|
---|
55 |
|
---|
56 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
57 | return new SymbolicNearestNeighbourClassificationModel(this, cloner);
|
---|
58 | }
|
---|
59 |
|
---|
60 | public override IEnumerable<double> GetEstimatedClassValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
61 | var estimatedValues = Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, rows);
|
---|
62 | var neighbors = new Dictionary<double, int>();
|
---|
63 | foreach (var ev in estimatedValues) {
|
---|
64 | int lower = 0, upper = 1;
|
---|
65 | double sdist = Math.Abs(ev - trainedTargetPair[0].Key);
|
---|
66 | for (int i = 1; i < trainedTargetPair.Count; i++) {
|
---|
67 | double d = Math.Abs(ev - trainedTargetPair[i].Key);
|
---|
68 | if (d > sdist) break;
|
---|
69 | lower = i;
|
---|
70 | upper = i + 1;
|
---|
71 | sdist = d;
|
---|
72 | }
|
---|
73 | neighbors.Clear();
|
---|
74 | neighbors[trainedTargetPair[lower].Value] = 1;
|
---|
75 | lower--;
|
---|
76 | for (int i = 1; i < Math.Min(k, trainedTargetPair.Count); i++) {
|
---|
77 | if (upper >= trainedTargetPair.Count || (lower > 0 && ev - trainedTargetPair[lower].Key < trainedTargetPair[upper].Key - ev)) {
|
---|
78 | if (!neighbors.ContainsKey(trainedTargetPair[lower].Value))
|
---|
79 | neighbors[trainedTargetPair[lower].Value] = 1;
|
---|
80 | else neighbors[trainedTargetPair[lower].Value]++;
|
---|
81 | lower--;
|
---|
82 | } else {
|
---|
83 | if (!neighbors.ContainsKey(trainedTargetPair[upper].Value))
|
---|
84 | neighbors[trainedTargetPair[upper].Value] = 1;
|
---|
85 | else neighbors[trainedTargetPair[upper].Value]++;
|
---|
86 | upper++;
|
---|
87 | }
|
---|
88 | }
|
---|
89 | yield return neighbors.MaxItems(x => x.Value).First().Key;
|
---|
90 | }
|
---|
91 | }
|
---|
92 |
|
---|
93 | public override void RecalculateModelParameters(IClassificationProblemData problemData, IEnumerable<int> rows) {
|
---|
94 | var estimatedValues = Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, problemData.Dataset, rows);
|
---|
95 | var targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
96 | var pair = estimatedValues.Zip(targetValues, (e, t) => new { Estimated = e, Target = t });
|
---|
97 |
|
---|
98 | // there could be more than one target value per estimated value
|
---|
99 | var dict = new Dictionary<double, Dictionary<double, int>>();
|
---|
100 | foreach (var p in pair) {
|
---|
101 | if (!dict.ContainsKey(p.Estimated)) dict[p.Estimated] = new Dictionary<double, int>();
|
---|
102 | if (!dict[p.Estimated].ContainsKey(p.Target)) dict[p.Estimated][p.Target] = 0;
|
---|
103 | dict[p.Estimated][p.Target]++;
|
---|
104 | }
|
---|
105 |
|
---|
106 | trainedTargetPair = new List<KeyValuePair<double, double>>();
|
---|
107 | foreach (var ev in dict) {
|
---|
108 | var target = ev.Value.MaxItems(x => x.Value).First().Key;
|
---|
109 | trainedTargetPair.Add(new KeyValuePair<double, double>(ev.Key, target));
|
---|
110 | }
|
---|
111 | trainedTargetPair = trainedTargetPair.OrderBy(x => x.Key).ToList();
|
---|
112 | }
|
---|
113 |
|
---|
114 | public override ISymbolicClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
115 | return new SymbolicClassificationSolution((ISymbolicClassificationModel)this.Clone(), problemData);
|
---|
116 | }
|
---|
117 | }
|
---|
118 | }
|
---|