Free cookie consent management tool by TermsFeed Policy Generator

source: branches/GP-MoveOperators/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer.cs @ 9666

Last change on this file since 9666 was 8660, checked in by gkronber, 12 years ago

#1847 merged r8205:8635 from trunk into branch

File size: 6.2 KB
RevLine 
[5557]1#region License Information
2/* HeuristicLab
[7259]3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[5557]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using HeuristicLab.Common;
23using HeuristicLab.Core;
24using HeuristicLab.Data;
25using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
26using HeuristicLab.Parameters;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28
29namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
30  /// <summary>
31  /// An operator that analyzes the training best symbolic classification solution for single objective symbolic classification problems.
32  /// </summary>
33  [Item("SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer", "An operator that analyzes the training best symbolic classification solution for single objective symbolic classification problems.")]
34  [StorableClass]
[5649]35  public sealed class SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer<ISymbolicClassificationSolution>,
[8660]36    ISymbolicDataAnalysisInterpreterOperator, ISymbolicDataAnalysisBoundedOperator, ISymbolicClassificationModelCreatorOperator {
[5649]37    private const string ProblemDataParameterName = "ProblemData";
[8660]38    private const string ModelCreatorParameterName = "ModelCreator";
[5649]39    private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicDataAnalysisTreeInterpreter";
[5770]40    private const string EstimationLimitsParameterName = "UpperEstimationLimit";
[5722]41    private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
[5649]42    #region parameter properties
43    public ILookupParameter<IClassificationProblemData> ProblemDataParameter {
44      get { return (ILookupParameter<IClassificationProblemData>)Parameters[ProblemDataParameterName]; }
45    }
[8660]46    public IValueLookupParameter<ISymbolicClassificationModelCreator> ModelCreatorParameter {
47      get { return (IValueLookupParameter<ISymbolicClassificationModelCreator>)Parameters[ModelCreatorParameterName]; }
48    }
49    ILookupParameter<ISymbolicClassificationModelCreator> ISymbolicClassificationModelCreatorOperator.ModelCreatorParameter {
50      get { return ModelCreatorParameter; }
51    }
[5649]52    public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
53      get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
54    }
[5770]55    public IValueLookupParameter<DoubleLimit> EstimationLimitsParameter {
56      get { return (IValueLookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
[5720]57    }
[5722]58    public IValueParameter<BoolValue> ApplyLinearScalingParameter {
59      get { return (IValueParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
60    }
[5649]61    #endregion
62    #region properties
[5722]63    public BoolValue ApplyLinearScaling {
64      get { return ApplyLinearScalingParameter.Value; }
65    }
[5649]66    #endregion
[5720]67
[5557]68    [StorableConstructor]
69    private SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
70    private SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer(SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
71    public SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer()
72      : base() {
[5685]73      Parameters.Add(new LookupParameter<IClassificationProblemData>(ProblemDataParameterName, "The problem data for the symbolic classification solution."));
[8660]74      Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, ""));
[5685]75      Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The symbolic data analysis tree interpreter for the symbolic expression tree."));
[5770]76      Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The lower and upper limit for the estimated values produced by the symbolic classification model."));
[5722]77      Parameters.Add(new ValueParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the produced symbolic classification solution should be linearly scaled.", new BoolValue(false)));
[5557]78    }
[8660]79
[5557]80    public override IDeepCloneable Clone(Cloner cloner) {
81      return new SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer(this, cloner);
82    }
[8660]83    [StorableHook(HookType.AfterDeserialization)]
84    private void AfterDeserialization() {
85      if (!Parameters.ContainsKey(ModelCreatorParameterName))
86        Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, ""));
87    }
[5557]88
89    protected override ISymbolicClassificationSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) {
[8660]90      var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
91      if (ApplyLinearScaling.Value) SymbolicClassificationModel.Scale(model, ProblemDataParameter.ActualValue);
92
93      model.RecalculateModelParameters(ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TrainingIndices);
94      return model.CreateClassificationSolution((IClassificationProblemData)ProblemDataParameter.ActualValue.Clone());
[5557]95    }
96  }
97}
Note: See TracBrowser for help on using the repository browser.