#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding {
///
/// Manipulates a symbolic expression by deleting a preexisting function-defining branch.
/// As described in Koza, Bennett, Andre, Keane, Genetic Programming III - Darwinian Invention and Problem Solving, 1999, pp. 108
///
[Item("SubroutineDeleter", "Manipulates a symbolic expression by deleting a preexisting function-defining branch. As described in Koza, Bennett, Andre, Keane, Genetic Programming III - Darwinian Invention and Problem Solving, 1999, pp. 108")]
[StorableClass]
public sealed class SubroutineDeleter : SymbolicExpressionTreeArchitectureManipulator {
[StorableConstructor]
private SubroutineDeleter(bool deserializing) : base(deserializing) { }
private SubroutineDeleter(SubroutineDeleter original, Cloner cloner) : base(original, cloner) { }
public SubroutineDeleter() : base() { }
public override IDeepCloneable Clone(Cloner cloner) {
return new SubroutineDeleter(this, cloner);
}
public override sealed void ModifyArchitecture(
IRandom random,
ISymbolicExpressionTree symbolicExpressionTree,
IntValue maxFunctionDefinitions, IntValue maxFunctionArguments) {
DeleteSubroutine(random, symbolicExpressionTree, maxFunctionDefinitions.Value, maxFunctionArguments.Value);
}
public static bool DeleteSubroutine(
IRandom random,
ISymbolicExpressionTree symbolicExpressionTree,
int maxFunctionDefinitions, int maxFunctionArguments) {
var functionDefiningBranches = symbolicExpressionTree.IterateNodesPrefix().OfType();
if (functionDefiningBranches.Count() == 0)
// no ADF to delete => abort
return false;
var selectedDefunBranch = functionDefiningBranches.SelectRandom(random);
// remove the selected defun
int defunSubtreeIndex = symbolicExpressionTree.Root.IndexOfSubtree(selectedDefunBranch);
symbolicExpressionTree.Root.RemoveSubtree(defunSubtreeIndex);
// remove references to deleted function
foreach (var subtree in symbolicExpressionTree.Root.Subtrees.OfType()) {
var matchingInvokeSymbol = (from symb in subtree.Grammar.Symbols.OfType()
where symb.FunctionName == selectedDefunBranch.FunctionName
select symb).SingleOrDefault();
if (matchingInvokeSymbol != null) {
subtree.Grammar.RemoveSymbol(matchingInvokeSymbol);
}
}
DeletionByRandomRegeneration(random, symbolicExpressionTree, selectedDefunBranch);
return true;
}
private static void DeletionByRandomRegeneration(IRandom random, ISymbolicExpressionTree symbolicExpressionTree, DefunTreeNode selectedDefunBranch) {
// find first invocation and replace it with a randomly generated tree
// can't find all invocations in one step because once we replaced a top level invocation
// the invocations below it are removed already
var invocationCutPoint = (from node in symbolicExpressionTree.IterateNodesPrefix()
from subtree in node.Subtrees.OfType()
where subtree.Symbol.FunctionName == selectedDefunBranch.FunctionName
select new CutPoint(node, subtree)).FirstOrDefault();
while (invocationCutPoint != null) {
// deletion by random regeneration
ISymbolicExpressionTreeNode replacementTree = null;
var allowedSymbolsList = invocationCutPoint.Parent.Grammar.GetAllowedChildSymbols(invocationCutPoint.Parent.Symbol, invocationCutPoint.ChildIndex).ToList();
var weights = allowedSymbolsList.Select(s => s.InitialFrequency);
var selectedSymbol = allowedSymbolsList.SelectRandom(weights, random);
int minPossibleLength = invocationCutPoint.Parent.Grammar.GetMinimumExpressionLength(selectedSymbol);
int maxLength = Math.Max(minPossibleLength, invocationCutPoint.Child.GetLength());
int minPossibleDepth = invocationCutPoint.Parent.Grammar.GetMinimumExpressionDepth(selectedSymbol);
int maxDepth = Math.Max(minPossibleDepth, invocationCutPoint.Child.GetDepth());
replacementTree = selectedSymbol.CreateTreeNode();
if (replacementTree.HasLocalParameters)
replacementTree.ResetLocalParameters(random);
invocationCutPoint.Parent.RemoveSubtree(invocationCutPoint.ChildIndex);
invocationCutPoint.Parent.InsertSubtree(invocationCutPoint.ChildIndex, replacementTree);
ProbabilisticTreeCreator.PTC2(random, replacementTree, maxLength, maxDepth);
invocationCutPoint = (from node in symbolicExpressionTree.IterateNodesPrefix()
from subtree in node.Subtrees.OfType()
where subtree.Symbol.FunctionName == selectedDefunBranch.FunctionName
select new CutPoint(node, subtree)).FirstOrDefault();
}
}
}
}