#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding { /// /// Manipulates a symbolic expression by deleting a preexisting function-defining branch. /// As described in Koza, Bennett, Andre, Keane, Genetic Programming III - Darwinian Invention and Problem Solving, 1999, pp. 108 /// [Item("SubroutineDeleter", "Manipulates a symbolic expression by deleting a preexisting function-defining branch. As described in Koza, Bennett, Andre, Keane, Genetic Programming III - Darwinian Invention and Problem Solving, 1999, pp. 108")] [StorableClass] public sealed class SubroutineDeleter : SymbolicExpressionTreeArchitectureManipulator { [StorableConstructor] private SubroutineDeleter(bool deserializing) : base(deserializing) { } private SubroutineDeleter(SubroutineDeleter original, Cloner cloner) : base(original, cloner) { } public SubroutineDeleter() : base() { } public override IDeepCloneable Clone(Cloner cloner) { return new SubroutineDeleter(this, cloner); } public override sealed void ModifyArchitecture( IRandom random, ISymbolicExpressionTree symbolicExpressionTree, IntValue maxFunctionDefinitions, IntValue maxFunctionArguments) { DeleteSubroutine(random, symbolicExpressionTree, maxFunctionDefinitions.Value, maxFunctionArguments.Value); } public static bool DeleteSubroutine( IRandom random, ISymbolicExpressionTree symbolicExpressionTree, int maxFunctionDefinitions, int maxFunctionArguments) { var functionDefiningBranches = symbolicExpressionTree.IterateNodesPrefix().OfType(); if (functionDefiningBranches.Count() == 0) // no ADF to delete => abort return false; var selectedDefunBranch = functionDefiningBranches.SelectRandom(random); // remove the selected defun int defunSubtreeIndex = symbolicExpressionTree.Root.IndexOfSubtree(selectedDefunBranch); symbolicExpressionTree.Root.RemoveSubtree(defunSubtreeIndex); // remove references to deleted function foreach (var subtree in symbolicExpressionTree.Root.Subtrees.OfType()) { var matchingInvokeSymbol = (from symb in subtree.Grammar.Symbols.OfType() where symb.FunctionName == selectedDefunBranch.FunctionName select symb).SingleOrDefault(); if (matchingInvokeSymbol != null) { subtree.Grammar.RemoveSymbol(matchingInvokeSymbol); } } DeletionByRandomRegeneration(random, symbolicExpressionTree, selectedDefunBranch); return true; } private static void DeletionByRandomRegeneration(IRandom random, ISymbolicExpressionTree symbolicExpressionTree, DefunTreeNode selectedDefunBranch) { // find first invocation and replace it with a randomly generated tree // can't find all invocations in one step because once we replaced a top level invocation // the invocations below it are removed already var invocationCutPoint = (from node in symbolicExpressionTree.IterateNodesPrefix() from subtree in node.Subtrees.OfType() where subtree.Symbol.FunctionName == selectedDefunBranch.FunctionName select new CutPoint(node, subtree)).FirstOrDefault(); while (invocationCutPoint != null) { // deletion by random regeneration ISymbolicExpressionTreeNode replacementTree = null; var allowedSymbolsList = invocationCutPoint.Parent.Grammar.GetAllowedChildSymbols(invocationCutPoint.Parent.Symbol, invocationCutPoint.ChildIndex).ToList(); var weights = allowedSymbolsList.Select(s => s.InitialFrequency); var selectedSymbol = allowedSymbolsList.SelectRandom(weights, random); int minPossibleLength = invocationCutPoint.Parent.Grammar.GetMinimumExpressionLength(selectedSymbol); int maxLength = Math.Max(minPossibleLength, invocationCutPoint.Child.GetLength()); int minPossibleDepth = invocationCutPoint.Parent.Grammar.GetMinimumExpressionDepth(selectedSymbol); int maxDepth = Math.Max(minPossibleDepth, invocationCutPoint.Child.GetDepth()); replacementTree = selectedSymbol.CreateTreeNode(); if (replacementTree.HasLocalParameters) replacementTree.ResetLocalParameters(random); invocationCutPoint.Parent.RemoveSubtree(invocationCutPoint.ChildIndex); invocationCutPoint.Parent.InsertSubtree(invocationCutPoint.ChildIndex, replacementTree); ProbabilisticTreeCreator.PTC2(random, replacementTree, maxLength, maxDepth); invocationCutPoint = (from node in symbolicExpressionTree.IterateNodesPrefix() from subtree in node.Subtrees.OfType() where subtree.Symbol.FunctionName == selectedDefunBranch.FunctionName select new CutPoint(node, subtree)).FirstOrDefault(); } } } }