#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Algorithms.DataAnalysis { [StorableClass] [Item(Name = "MeanSum", Description = "Sum of mean functions for Gaussian processes.")] public sealed class MeanSum : Item, IMeanFunction { [Storable] private ItemList terms; [Storable] private int numberOfVariables; public ItemList Terms { get { return terms; } } [StorableConstructor] private MeanSum(bool deserializing) : base(deserializing) { } private MeanSum(MeanSum original, Cloner cloner) : base(original, cloner) { this.terms = cloner.Clone(original.terms); this.numberOfVariables = original.numberOfVariables; } public MeanSum() { this.terms = new ItemList(); } public override IDeepCloneable Clone(Cloner cloner) { return new MeanSum(this, cloner); } public int GetNumberOfParameters(int numberOfVariables) { this.numberOfVariables = numberOfVariables; return terms.Select(t => t.GetNumberOfParameters(numberOfVariables)).Sum(); } public void SetParameter(double[] hyp) { int offset = 0; foreach (var t in terms) { var numberOfParameters = t.GetNumberOfParameters(numberOfVariables); t.SetParameter(hyp.Skip(offset).Take(numberOfParameters).ToArray()); offset += numberOfParameters; } } public double[] GetMean(double[,] x) { var res = terms.First().GetMean(x); foreach (var t in terms.Skip(1)) { var a = t.GetMean(x); for (int i = 0; i < res.Length; i++) res[i] += a[i]; } return res; } public double[] GetGradients(int k, double[,] x) { int i = 0; while (k >= terms[i].GetNumberOfParameters(numberOfVariables)) { k -= terms[i].GetNumberOfParameters(numberOfVariables); i++; } return terms[i].GetGradients(k, x); } } }