#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Algorithms.DataAnalysis {
[StorableClass]
[Item(Name = "CovariancePeriodic", Description = "Periodic covariance function for Gaussian processes.")]
public sealed class CovariancePeriodic : ParameterizedNamedItem, ICovarianceFunction {
[Storable]
private double scale;
[Storable]
private readonly HyperParameter scaleParameter;
public IValueParameter ScaleParameter {
get { return scaleParameter; }
}
[Storable]
private double inverseLength;
[Storable]
private readonly HyperParameter inverseLengthParameter;
public IValueParameter InverseLengthParameter {
get { return inverseLengthParameter; }
}
[Storable]
private double period;
[Storable]
private readonly HyperParameter periodParameter;
public IValueParameter PeriodParameter {
get { return periodParameter; }
}
[StorableConstructor]
private CovariancePeriodic(bool deserializing) : base(deserializing) { }
private CovariancePeriodic(CovariancePeriodic original, Cloner cloner)
: base(original, cloner) {
this.scaleParameter = cloner.Clone(original.scaleParameter);
this.inverseLengthParameter = cloner.Clone(original.inverseLengthParameter);
this.periodParameter = cloner.Clone(original.periodParameter);
this.scale = original.scale;
this.inverseLength = original.inverseLength;
this.period = original.period;
RegisterEvents();
}
public CovariancePeriodic()
: base() {
Name = ItemName;
Description = ItemDescription;
scaleParameter = new HyperParameter("Scale", "The scale of the periodic covariance function.");
inverseLengthParameter = new HyperParameter("InverseLength", "The inverse length parameter for the periodic covariance function.");
periodParameter = new HyperParameter("Period", "The period parameter for the periodic covariance function.");
Parameters.Add(scaleParameter);
Parameters.Add(inverseLengthParameter);
Parameters.Add(periodParameter);
RegisterEvents();
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
RegisterEvents();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new CovariancePeriodic(this, cloner);
}
// caching
private void RegisterEvents() {
Util.AttachValueChangeHandler(scaleParameter, () => { scale = scaleParameter.Value.Value; });
Util.AttachValueChangeHandler(inverseLengthParameter, () => { inverseLength = inverseLengthParameter.Value.Value; });
Util.AttachValueChangeHandler(periodParameter, () => { period = periodParameter.Value.Value; });
}
public int GetNumberOfParameters(int numberOfVariables) {
return
(new[] { scaleParameter, inverseLengthParameter, periodParameter }).Count(p => !p.Fixed);
}
public void SetParameter(double[] hyp) {
int i = 0;
if (!inverseLengthParameter.Fixed) {
inverseLengthParameter.SetValue(new DoubleValue(1.0 / Math.Exp(hyp[i])));
i++;
}
if (!periodParameter.Fixed) {
periodParameter.SetValue(new DoubleValue(Math.Exp(hyp[i])));
i++;
}
if (!scaleParameter.Fixed) {
scaleParameter.SetValue(new DoubleValue(Math.Exp(2 * hyp[i])));
i++;
}
if (hyp.Length != i) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovariancePeriod", "hyp");
}
public double GetCovariance(double[,] x, int i, int j) {
double k = i == j ? 0.0 : GetDistance(x, x, i, j);
k = Math.PI * k / period;
k = Math.Sin(k) * inverseLength;
k = k * k;
return scale * Math.Exp(-2.0 * k);
}
public IEnumerable GetGradient(double[,] x, int i, int j) {
double v = i == j ? 0.0 : Math.PI * GetDistance(x, x, i, j) / period;
double gradient = Math.Sin(v) * inverseLength;
gradient *= gradient;
yield return 4.0 * scale * Math.Exp(-2.0 * gradient) * gradient;
double r = Math.Sin(v) * inverseLength;
yield return 4.0 * scale * inverseLength * Math.Exp(-2 * r * r) * r * Math.Cos(v) * v;
yield return 2.0 * scale * Math.Exp(-2 * gradient);
}
public double GetCrossCovariance(double[,] x, double[,] xt, int i, int j) {
double k = GetDistance(x, xt, i, j);
k = Math.PI * k / period;
k = Math.Sin(k) * inverseLength;
k = k * k;
return scale * Math.Exp(-2.0 * k);
}
private double GetDistance(double[,] x, double[,] xt, int i, int j) {
return Math.Sqrt(Util.SqrDist(x, i, xt, j));
}
}
}