#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Operators;
using HeuristicLab.Random;
using HeuristicLab.Functions;
namespace HeuristicLab.StructureIdentification {
public class SubstituteSubTreeManipulation : OperatorBase {
public override string Description {
get { return "Selects a random node of the tree and replaces it with randomly initialized subtree."; }
}
public SubstituteSubTreeManipulation()
: base() {
AddVariableInfo(new VariableInfo("Random", "Uniform random number generator", typeof(MersenneTwister), VariableKind.In));
AddVariableInfo(new VariableInfo("OperatorLibrary", "The operator library containing all available operators", typeof(GPOperatorLibrary), VariableKind.In));
AddVariableInfo(new VariableInfo("MaxTreeHeight", "The maximal allowed height of the tree", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("MaxTreeSize", "The maximal allowed size (number of nodes) of the tree", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("BalancedTreesRate", "Determines how many trees should be balanced", typeof(DoubleData), VariableKind.In));
AddVariableInfo(new VariableInfo("FunctionTree", "The tree to manipulate", typeof(IFunctionTree), VariableKind.In | VariableKind.Out));
AddVariableInfo(new VariableInfo("TreeSize", "The size (number of nodes) of the tree", typeof(IntData), VariableKind.In | VariableKind.Out));
AddVariableInfo(new VariableInfo("TreeHeight", "The height of the tree", typeof(IntData), VariableKind.In | VariableKind.Out));
}
public override IOperation Apply(IScope scope) {
IFunctionTree root = GetVariableValue("FunctionTree", scope, true);
MersenneTwister random = GetVariableValue("Random", scope, true);
GPOperatorLibrary library = GetVariableValue("OperatorLibrary", scope, true);
int maxTreeHeight = GetVariableValue("MaxTreeHeight", scope, true).Data;
int maxTreeSize = GetVariableValue("MaxTreeSize", scope, true).Data;
double balancedTreesRate = GetVariableValue("BalancedTreesRate", scope, true).Data;
int treeSize = GetVariableValue("TreeSize", scope, true).Data;
int treeHeight = GetVariableValue("TreeHeight", scope, true).Data;
TreeGardener gardener = new TreeGardener(random, library);
IFunctionTree parent = gardener.GetRandomParentNode(root);
if(parent == null) {
// parent == null means we should subsitute the whole tree
// => create a new random tree
// create a new random function tree
IFunctionTree newTree;
if(random.NextDouble() <= balancedTreesRate) {
newTree = gardener.CreateRandomTree(gardener.AllFunctions, maxTreeSize, maxTreeHeight, true);
} else {
newTree = gardener.CreateRandomTree(gardener.AllFunctions, maxTreeSize, maxTreeHeight, false);
}
if(!gardener.IsValidTree(newTree)) {
throw new InvalidProgramException();
}
// update the variables in the scope with the new values
GetVariableValue("TreeSize", scope, true).Data = gardener.GetTreeSize(newTree);
GetVariableValue("TreeHeight", scope, true).Data = gardener.GetTreeHeight(newTree);
scope.GetVariable(scope.TranslateName("FunctionTree")).Value = newTree;
// return a CompositeOperation that randomly initializes the new tree
return gardener.CreateInitializationOperation(gardener.GetAllSubTrees(newTree), scope);
} else {
// determine a random child of the parent to be replaced
int childIndex = random.Next(parent.SubTrees.Count);
// get the list of allowed functions for the new sub-tree
IList allowedFunctions = gardener.GetAllowedSubFunctions(parent.Function, childIndex);
if(allowedFunctions.Count == 0) {
// don't change anything
// this shouldn't happen
throw new InvalidProgramException();
}
// calculate the maximum size and height of the new sub-tree based on the location where
// it will be inserted
int parentLevel = gardener.GetBranchLevel(root, parent);
int maxSubTreeHeight = maxTreeHeight - parentLevel;
int maxSubTreeSize = maxTreeSize - (treeSize - gardener.GetTreeSize(parent.SubTrees[childIndex]));
// create a random function tree
IFunctionTree newTree;
if(random.NextDouble() <= balancedTreesRate) {
newTree = gardener.CreateRandomTree(allowedFunctions, maxSubTreeSize, maxSubTreeHeight, true);
} else {
newTree = gardener.CreateRandomTree(allowedFunctions, maxSubTreeSize, maxSubTreeHeight, false);
}
IFunctionTree oldChild = parent.SubTrees[childIndex];
parent.RemoveSubTree(childIndex);
parent.InsertSubTree(childIndex, newTree);
if(!gardener.IsValidTree(root)) {
throw new InvalidProgramException();
}
// update the values of treeSize and treeHeight
GetVariableValue("TreeSize", scope, true).Data = gardener.GetTreeSize(root);
GetVariableValue("TreeHeight", scope, true).Data = gardener.GetTreeHeight(root);
// the root hasn't changed so we don't need to update
// return a CompositeOperation that randomly initializes all nodes of the new subtree
return gardener.CreateInitializationOperation(gardener.GetAllSubTrees(newTree), scope);
}
}
}
}