#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Operators; using HeuristicLab.Random; using HeuristicLab.Functions; namespace HeuristicLab.StructureIdentification { public class SubstituteSubTreeManipulation : OperatorBase { public override string Description { get { return "Selects a random node of the tree and replaces it with randomly initialized subtree."; } } public SubstituteSubTreeManipulation() : base() { AddVariableInfo(new VariableInfo("Random", "Uniform random number generator", typeof(MersenneTwister), VariableKind.In)); AddVariableInfo(new VariableInfo("OperatorLibrary", "The operator library containing all available operators", typeof(GPOperatorLibrary), VariableKind.In)); AddVariableInfo(new VariableInfo("MaxTreeHeight", "The maximal allowed height of the tree", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("MaxTreeSize", "The maximal allowed size (number of nodes) of the tree", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("BalancedTreesRate", "Determines how many trees should be balanced", typeof(DoubleData), VariableKind.In)); AddVariableInfo(new VariableInfo("FunctionTree", "The tree to manipulate", typeof(IFunctionTree), VariableKind.In | VariableKind.Out)); AddVariableInfo(new VariableInfo("TreeSize", "The size (number of nodes) of the tree", typeof(IntData), VariableKind.In | VariableKind.Out)); AddVariableInfo(new VariableInfo("TreeHeight", "The height of the tree", typeof(IntData), VariableKind.In | VariableKind.Out)); } public override IOperation Apply(IScope scope) { IFunctionTree root = GetVariableValue("FunctionTree", scope, true); MersenneTwister random = GetVariableValue("Random", scope, true); GPOperatorLibrary library = GetVariableValue("OperatorLibrary", scope, true); int maxTreeHeight = GetVariableValue("MaxTreeHeight", scope, true).Data; int maxTreeSize = GetVariableValue("MaxTreeSize", scope, true).Data; double balancedTreesRate = GetVariableValue("BalancedTreesRate", scope, true).Data; int treeSize = GetVariableValue("TreeSize", scope, true).Data; int treeHeight = GetVariableValue("TreeHeight", scope, true).Data; TreeGardener gardener = new TreeGardener(random, library); IFunctionTree parent = gardener.GetRandomParentNode(root); if(parent == null) { // parent == null means we should subsitute the whole tree // => create a new random tree // create a new random function tree IFunctionTree newTree; if(random.NextDouble() <= balancedTreesRate) { newTree = gardener.CreateRandomTree(gardener.AllFunctions, maxTreeSize, maxTreeHeight, true); } else { newTree = gardener.CreateRandomTree(gardener.AllFunctions, maxTreeSize, maxTreeHeight, false); } if(!gardener.IsValidTree(newTree)) { throw new InvalidProgramException(); } // update the variables in the scope with the new values GetVariableValue("TreeSize", scope, true).Data = gardener.GetTreeSize(newTree); GetVariableValue("TreeHeight", scope, true).Data = gardener.GetTreeHeight(newTree); scope.GetVariable(scope.TranslateName("FunctionTree")).Value = newTree; // return a CompositeOperation that randomly initializes the new tree return gardener.CreateInitializationOperation(gardener.GetAllSubTrees(newTree), scope); } else { // determine a random child of the parent to be replaced int childIndex = random.Next(parent.SubTrees.Count); // get the list of allowed functions for the new sub-tree IList allowedFunctions = gardener.GetAllowedSubFunctions(parent.Function, childIndex); if(allowedFunctions.Count == 0) { // don't change anything // this shouldn't happen throw new InvalidProgramException(); } // calculate the maximum size and height of the new sub-tree based on the location where // it will be inserted int parentLevel = gardener.GetBranchLevel(root, parent); int maxSubTreeHeight = maxTreeHeight - parentLevel; int maxSubTreeSize = maxTreeSize - (treeSize - gardener.GetTreeSize(parent.SubTrees[childIndex])); // create a random function tree IFunctionTree newTree; if(random.NextDouble() <= balancedTreesRate) { newTree = gardener.CreateRandomTree(allowedFunctions, maxSubTreeSize, maxSubTreeHeight, true); } else { newTree = gardener.CreateRandomTree(allowedFunctions, maxSubTreeSize, maxSubTreeHeight, false); } IFunctionTree oldChild = parent.SubTrees[childIndex]; parent.RemoveSubTree(childIndex); parent.InsertSubTree(childIndex, newTree); if(!gardener.IsValidTree(root)) { throw new InvalidProgramException(); } // update the values of treeSize and treeHeight GetVariableValue("TreeSize", scope, true).Data = gardener.GetTreeSize(root); GetVariableValue("TreeHeight", scope, true).Data = gardener.GetTreeHeight(root); // the root hasn't changed so we don't need to update // return a CompositeOperation that randomly initializes all nodes of the new subtree return gardener.CreateInitializationOperation(gardener.GetAllSubTrees(newTree), scope); } } } }