#region License Information /* HeuristicLab * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.Problems.VehicleRouting.Encodings.Potvin; using HeuristicLab.Problems.VehicleRouting.Encodings; using HeuristicLab.Problems.VehicleRouting; using HeuristicLab.Problems.VehicleRouting.Interfaces; namespace HeuristicLab.Analysis.FitnessLandscape.VRP { [Item("TwoOptStarManipulator", "Two opt star manipulation")] [StorableClass] public sealed class TwoOptStarManipulator : PotvinManipulator { [StorableConstructor] private TwoOptStarManipulator(bool deserializing) : base(deserializing) { } private TwoOptStarManipulator(TwoOptStarManipulator original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new TwoOptStarManipulator(this, cloner); } public TwoOptStarManipulator() : base() { } public static void Apply(IRandom random, PotvinEncoding individual, IVRPProblemInstance problemInstance, bool allowInfeasible) { bool feasible; int count = 0; //consider creating new tour individual.Tours.Add(new Tour()); do { feasible = true; int route1Idx = random.Next(individual.Tours.Count); int route2Idx = random.Next(individual.Tours.Count - 1); if (route2Idx >= route1Idx) route2Idx++; Tour route1 = individual.Tours[route1Idx]; Tour route2 = individual.Tours[route2Idx]; int x1 = random.Next(route1.Stops.Count + 1); int x2 = random.Next(route2.Stops.Count + 1); var originalFeasible = problemInstance.TourFeasible(route1, individual) && problemInstance.TourFeasible(route2, individual); SwapSegments(x1, route1, x2, route2); if (!allowInfeasible && originalFeasible) { feasible = problemInstance.TourFeasible(route1, individual) && problemInstance.TourFeasible(route2, individual); if (!feasible) SwapSegments(x1, route1, x2, route2); } } while (!feasible && count++ < 100); individual.Tours.RemoveAll(t => t.Stops.Count == 0); } private static void SwapSegments(int x1, Tour route1, int x2, Tour route2) { int count = route1.Stops.Count - x1; List segmentX1 = new List(); if (count > 0) { segmentX1 = route1.Stops.GetRange(x1, count); route1.Stops.RemoveRange(x1, count); } count = route2.Stops.Count - x2; List segmentX2 = new List(); if (count > 0) { segmentX2 = route2.Stops.GetRange(x2, count); route2.Stops.RemoveRange(x2, count); } route1.Stops.AddRange(segmentX2); route2.Stops.AddRange(segmentX1); } protected override void Manipulate(IRandom random, PotvinEncoding individual) { bool allowInfeasible = AllowInfeasibleSolutions.Value.Value; Apply(random, individual, ProblemInstance, allowInfeasible); } } }