#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * and the BEACON Center for the Study of Evolution in Action. * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.BinaryVectorEncoding; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Algorithms.ParameterlessPopulationPyramid { // This code is based off the publication // B. W. Goldman and W. F. Punch, "Parameter-less Population Pyramid," GECCO, pp. 785–792, 2014 // and the original source code in C++11 available from: https://github.com/brianwgoldman/Parameter-less_Population_Pyramid [StorableClass] public class Population : DeepCloneable { [Storable] public List Solutions { get; private set; } [Storable] public LinkageTree Tree { get; private set; } [StorableConstructor] protected Population(bool deserializing) : base() { } protected Population(Population original, Cloner cloner) : base(original, cloner) { Solutions = original.Solutions.Select(cloner.Clone).ToList(); Tree = cloner.Clone(original.Tree); } public override IDeepCloneable Clone(Cloner cloner) { return new Population(this, cloner); } public Population(int length, IRandom rand) { Solutions = new List(); Tree = new LinkageTree(length, rand); } public void Add(BinaryVector solution) { Solutions.Add(solution); Tree.Add(solution); } } }