#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
* and the BEACON Center for the Study of Evolution in Action.
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Diagnostics;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Algorithms.DataAnalysis {
// Greedy Function Approximation: A Gradient Boosting Machine (page 9)
[StorableClass]
[Item("Logistic regression loss", "")]
public sealed class LogisticRegressionLoss : Item, ILossFunction {
public LogisticRegressionLoss() { }
public double GetLoss(IEnumerable target, IEnumerable pred) {
var targetEnum = target.GetEnumerator();
var predEnum = pred.GetEnumerator();
double s = 0;
while (targetEnum.MoveNext() & predEnum.MoveNext()) {
Debug.Assert(targetEnum.Current.IsAlmost(0.0) || targetEnum.Current.IsAlmost(1.0), "labels must be 0 or 1 for logistic regression loss");
var y = targetEnum.Current * 2 - 1; // y in {-1,1}
s += Math.Log(1 + Math.Exp(-2 * y * predEnum.Current));
}
if (targetEnum.MoveNext() | predEnum.MoveNext())
throw new ArgumentException("target and pred have different lengths");
return s;
}
public IEnumerable GetLossGradient(IEnumerable target, IEnumerable pred) {
var targetEnum = target.GetEnumerator();
var predEnum = pred.GetEnumerator();
while (targetEnum.MoveNext() & predEnum.MoveNext()) {
Debug.Assert(targetEnum.Current.IsAlmost(0.0) || targetEnum.Current.IsAlmost(1.0), "labels must be 0 or 1 for logistic regression loss");
var y = targetEnum.Current * 2 - 1; // y in {-1,1}
yield return 2 * y / (1 + Math.Exp(2 * y * predEnum.Current));
}
if (targetEnum.MoveNext() | predEnum.MoveNext())
throw new ArgumentException("target and pred have different lengths");
}
// targetArr and predArr are not changed by LineSearch
public double LineSearch(double[] targetArr, double[] predArr, int[] idx, int startIdx, int endIdx) {
if (targetArr.Length != predArr.Length)
throw new ArgumentException("target and pred have different lengths");
// "Simple Newton-Raphson step" of eqn. 23
double sumY = 0.0;
double sumDiff = 0.0;
for (int i = startIdx; i <= endIdx; i++) {
var row = idx[i];
var y = targetArr[row] * 2 - 1; // y in {-1,1}
var pseudoResponse = 2 * y / (1 + Math.Exp(2 * y * predArr[row]));
sumY += pseudoResponse;
sumDiff += Math.Abs(pseudoResponse) * (2 - Math.Abs(pseudoResponse));
}
// prevent divByZero
sumDiff = Math.Max(1E-12, sumDiff);
return sumY / sumDiff;
}
#region item implementation
[StorableConstructor]
private LogisticRegressionLoss(bool deserializing) : base(deserializing) { }
private LogisticRegressionLoss(LogisticRegressionLoss original, Cloner cloner) : base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new LogisticRegressionLoss(this, cloner);
}
#endregion
}
}