#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.RealVectorEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Algorithms.EGO {
///
/// A base class for operators that manipulate real-valued vectors.
///
[Item("SampleCollector", "Collects RealVectors into a modifiablbe dataset")]
[StorableClass]
public class SampleCollector : InstrumentedOperator {
public override bool CanChangeName => true;
public ILookupParameter RealVectorParameter => (ILookupParameter)Parameters["RealVector"];
public ILookupParameter QualityParameter => (ILookupParameter)Parameters["Quality"];
public ILookupParameter DatasetParameter => (ILookupParameter)Parameters["Dataset"];
[StorableConstructor]
protected SampleCollector(bool deserializing) : base(deserializing) { }
protected SampleCollector(SampleCollector original, Cloner cloner) : base(original, cloner) { }
public SampleCollector() {
Parameters.Add(new LookupParameter("RealVector", "The vector which should be collected."));
Parameters.Add(new LookupParameter("Quality", "The quality associated which this vector"));
Parameters.Add(new LookupParameter("Dataset", "The Dataset in wich new samples are stored."));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SampleCollector(this, cloner);
}
public sealed override IOperation InstrumentedApply() {
var vector = RealVectorParameter.ActualValue;
var quality = QualityParameter.ActualValue.Value;
var data = DatasetParameter.ActualValue;
if (data.Columns != vector.Length + 1) {
if (data.Columns != 0 || data.Rows != 0) throw new OperatorExecutionException(this, "dataset columns do not match samplesize+1");
for (var i = 0; i < vector.Length; i++)
data.AddVariable("input" + i, new double[0]);
data.AddVariable("output", new double[0]);
}
AddRow(data, vector, quality);
return base.InstrumentedApply(); ;
}
private static void AddRow(ModifiableDataset data, RealVector vector, double quality) {
var row = new object[vector.Length + 1];
for (var i = 0; i < vector.Length; i++)
row[i] = vector[i];
row[vector.Length] = quality;
data.AddRow(row);
}
}
}