#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.RealVectorEncoding; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis; // ReSharper disable once CheckNamespace namespace HeuristicLab.Algorithms.EGO { [StorableClass] public abstract class ExpectedImprovementBase : InfillCriterionBase { #region ParameterNames private const string ExploitationWeightParameterName = "ExploitationWeight"; #endregion #region ParameterProperties public IFixedValueParameter ExploitationWeightParameter => Parameters[ExploitationWeightParameterName] as IFixedValueParameter; #endregion #region Properties protected double ExploitationWeight => ExploitationWeightParameter.Value.Value; [Storable] protected double BestFitness; #endregion #region Constructors, Serialization and Cloning [StorableConstructor] protected ExpectedImprovementBase(bool deserializing) : base(deserializing) { } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { RegisterEventhandlers(); } protected ExpectedImprovementBase(ExpectedImprovementBase original, Cloner cloner) : base(original, cloner) { BestFitness = original.BestFitness; RegisterEventhandlers(); } protected ExpectedImprovementBase() { Parameters.Add(new FixedValueParameter(ExploitationWeightParameterName, "A value between 0 and 1 indicating the focus on exploration (0) or exploitation (1). 0.5 equates to the original EI by Jones et al.", new DoubleValue(0.5))); RegisterEventhandlers(); } #endregion public override void Initialize() { var solution = RegressionSolution as IConfidenceRegressionSolution; if (solution == null) throw new ArgumentException("can not calculate EI without a regression solution providing confidence values"); BestFitness = FindBestFitness(solution); } protected abstract double FindBestFitness(IConfidenceRegressionSolution solution); public override double Evaluate(RealVector vector) { var model = RegressionSolution.Model as IConfidenceRegressionModel; var yhat = model.GetEstimation(vector); var s = Math.Sqrt(model.GetVariance(vector)); return Evaluate(vector, yhat, s); } protected abstract double Evaluate(RealVector vector, double estimatedFitness, double estimatedStandardDeviation); #region Eventhandling private void RegisterEventhandlers() { DeregisterEventhandlers(); ExploitationWeightParameter.Value.ValueChanged += OnExploitationWeightChanged; } private void DeregisterEventhandlers() { ExploitationWeightParameter.Value.ValueChanged -= OnExploitationWeightChanged; } private void OnExploitationWeightChanged(object sender, EventArgs e) { ExploitationWeightParameter.Value.ValueChanged -= OnExploitationWeightChanged; ExploitationWeightParameter.Value.Value = Math.Max(0, Math.Min(ExploitationWeight, 1)); ExploitationWeightParameter.Value.ValueChanged += OnExploitationWeightChanged; } #endregion #region Helpers public static double GetEstimatedImprovement(double bestFitness, double estimatedFitness, double modelUncertainty, double weight, bool maximization) { if (Math.Abs(modelUncertainty) < double.Epsilon) return 0; var diff = maximization ? (estimatedFitness - bestFitness) : (bestFitness - estimatedFitness); var val = diff / modelUncertainty; var res = weight * diff * StandardNormalDistribution(val) + (1 - weight) * modelUncertainty * StandardNormalDensity(val); return double.IsInfinity(res) || double.IsNaN(res) ? 0 : res; } private static double StandardNormalDensity(double x) { if (Math.Abs(x) > 10) return 0; return Math.Exp(-0.5 * x * x) / Math.Sqrt(2 * Math.PI); } //taken from https://www.johndcook.com/blog/2009/01/19/stand-alone-error-function-erf/ private static double StandardNormalDistribution(double x) { if (x > 10) return 1; if (x < -10) return 0; const double a1 = 0.254829592; const double a2 = -0.284496736; const double a3 = 1.421413741; const double a4 = -1.453152027; const double a5 = 1.061405429; const double p = 0.3275911; var sign = x < 0 ? -1 : 1; x = Math.Abs(x) / Math.Sqrt(2.0); var t = 1.0 / (1.0 + p * x); var y = 1.0 - ((((a5 * t + a4) * t + a3) * t + a2) * t + a1) * t * Math.Exp(-x * x); return 0.5 * (1.0 + sign * y); } #endregion } }