using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Transformations { [Item("ShiftStandardDistributionTransformation.cs", "f(x) = ((x - m_org) / s_org ) * s_tar + m_tar | Represents Transformation to unit standard deviation and additional linear transformation to a target Mean and Standard deviation")] public class ShiftStandardDistributionTransformation : Transformation { protected const string OriginalMeanParameterName = "OriginalMean"; protected const string OriginalStandardDeviationParameterName = "OriginalStandardDeviation"; protected const string MeanParameterName = "Mean"; protected const string StandardDeviationParameterName = "StandardDeviation"; #region Parameters public IValueParameter OriginalMeanParameter { get { return (IValueParameter)Parameters[OriginalMeanParameterName]; } } public IValueParameter OriginalStandardDeviationParameter { get { return (IValueParameter)Parameters[OriginalStandardDeviationParameterName]; } } public IValueParameter MeanParameter { get { return (IValueParameter)Parameters[MeanParameterName]; } } public IValueParameter StandardDeviationParameter { get { return (IValueParameter)Parameters[StandardDeviationParameterName]; } } #endregion #region properties public double OriginalMean { get { return OriginalMeanParameter.Value.Value; } set { OriginalMeanParameter.Value.Value = value; } } public double OriginalStandardDeviation { get { return OriginalStandardDeviationParameter.Value.Value; } set { OriginalStandardDeviationParameter.Value.Value = value; } } public double Mean { get { return MeanParameter.Value.Value; } } public double StandardDeviation { get { return StandardDeviationParameter.Value.Value; } } #endregion [StorableConstructor] protected ShiftStandardDistributionTransformation(bool deserializing) : base(deserializing) { } protected ShiftStandardDistributionTransformation(Transformation original, Cloner cloner) : base(original, cloner) { } public ShiftStandardDistributionTransformation(IEnumerable allowedColumns) : base(allowedColumns) { Parameters.Add(new ValueParameter(OriginalMeanParameterName, "m_org | Mean value of the original data's deviation.", new DoubleValue())); Parameters.Add(new ValueParameter(OriginalStandardDeviationParameterName, "s_org | Standard deviation of the original data.", new DoubleValue())); OriginalMeanParameter.Hidden = true; OriginalStandardDeviationParameter.Hidden = true; Parameters.Add(new ValueParameter(MeanParameterName, "m_tar | Mean value for the target deviation.", new DoubleValue(0.0))); Parameters.Add(new ValueParameter(StandardDeviationParameterName, "s_tar | Standard deviation for the target data.", new DoubleValue(1.0))); } public override IDeepCloneable Clone(Cloner cloner) { return new ShiftStandardDistributionTransformation(this, cloner); } // http://en.wikipedia.org/wiki/Standard_deviation // http://www.statistics4u.info/fundstat_germ/ee_ztransform.html // https://www.uni-due.de/~bm0061/vorl12.pdf p5 public override IEnumerable Apply(IEnumerable data) { ConfigureParameters(data); if (OriginalStandardDeviation == 0.0) { foreach (var e in data) { yield return e; } yield break; } foreach (var e in data) { double unitNormalDistributedValue = (e - OriginalMean) / OriginalStandardDeviation; yield return unitNormalDistributedValue * StandardDeviation + Mean; } } public override bool Check(IEnumerable data, out string errorMsg) { ConfigureParameters(data); errorMsg = ""; if (OriginalStandardDeviation == 0.0) { errorMsg = "Standard deviaton for the original data is 0.0, Transformation cannot be applied onto these values."; return false; } return true; } protected void ConfigureParameters(IEnumerable data) { OriginalStandardDeviation = data.StandardDeviation(); OriginalMean = data.Average(); } } }