#region License Information /* HeuristicLab * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.DataPreprocessing { internal class ProblemDataCreator { private readonly IPreprocessingContext context; private Dataset ExportedDataset { get { return exporteDataset ?? (exporteDataset = context.Data.ExportToDataset()); } } private Dataset exporteDataset; private IEnumerable InputVariables { get { return context.Data.VariableNames; } } private IEnumerable Transformations { get { return context.Data.Transformations; } } public ProblemDataCreator(IPreprocessingContext context) { this.context = context; } public IDataAnalysisProblemData CreateProblemData() { var oldProblemData = context.Problem.ProblemData; IDataAnalysisProblemData problemData = null; if (oldProblemData is RegressionProblemData) { problemData = CreateRegressionData((RegressionProblemData)oldProblemData); } else if (oldProblemData is ClassificationProblemData) { problemData = CreateClassificationData((ClassificationProblemData)oldProblemData); } else if (oldProblemData is ClusteringProblemData) { problemData = CreateClusteringData((ClusteringProblemData)oldProblemData); } else { throw new NotImplementedException("The type of the DataAnalysisProblemData is not supported."); } SetTrainingAndTestPartition(problemData); return problemData; } private IDataAnalysisProblemData CreateRegressionData(RegressionProblemData oldProblemData) { var targetVariable = oldProblemData.TargetVariable; // target variable must be double and must exist in the new dataset return new RegressionProblemData(ExportedDataset, InputVariables, targetVariable, Transformations); } private IDataAnalysisProblemData CreateClassificationData(ClassificationProblemData oldProblemData) { var targetVariable = oldProblemData.TargetVariable; // target variable must be double and must exist in the new dataset return new ClassificationProblemData(ExportedDataset, InputVariables, targetVariable, Transformations); } private IDataAnalysisProblemData CreateClusteringData(ClusteringProblemData oldProblemData) { return new ClusteringProblemData(ExportedDataset, InputVariables, Transformations); } private void SetTrainingAndTestPartition(IDataAnalysisProblemData problemData) { var ppData = context.Data; problemData.TrainingPartition.Start = ppData.TrainingPartition.Start; problemData.TrainingPartition.End = ppData.TrainingPartition.End; problemData.TestPartition.Start = ppData.TestPartition.Start; problemData.TestPartition.End = ppData.TestPartition.End; } } }