#region License Information /* HeuristicLab * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.DataPreprocessing { [Item("PreprocessingData", "Represents data used for preprocessing.")] public class PreprocessingData : NamedItem, IPreprocessingData { protected IDictionary variableValues; protected IList variableNames; protected double trainingToTestRatio; protected PreprocessingData(PreprocessingData original, Cloner cloner) : base(original, cloner) { variableValues = CopyVariableValues(original.variableValues); variableNames = new List(original.variableNames); trainingToTestRatio = original.trainingToTestRatio; } public PreprocessingData(IDataAnalysisProblemData problemData) : base() { Name = "-"; variableNames = new List(problemData.Dataset.VariableNames); // create dictionary from variable name to index int columnIndex = 0; variableValues = new Dictionary(); foreach (var variableName in problemData.Dataset.VariableNames) { if (problemData.Dataset.IsType(variableName)) { variableValues[columnIndex] = problemData.Dataset.GetDoubleValues(variableName).ToList(); } else if (problemData.Dataset.IsType(variableName)) { variableValues[columnIndex] = CreateColumn(problemData.Dataset, columnIndex, x => x); } else if (problemData.Dataset.IsType(variableName)) { variableValues[columnIndex] = CreateColumn(problemData.Dataset, columnIndex, x => DateTime.Parse(x)); } else { throw new ArgumentException("The datatype of column " + variableName + " must be of type List, List or List"); } ++columnIndex; } trainingToTestRatio = (double)problemData.TrainingPartition.Size / Math.Max(problemData.Dataset.Rows, double.Epsilon); } private static IList CreateColumn(Dataset ds, int column, Func selector) { var list = new List(ds.Rows); for (int row = 0; row < ds.Rows; ++row) { list.Add(selector(ds.GetValue(row, column))); } return list; } protected IDictionary CopyVariableValues(IDictionary original) { var copy = new Dictionary(variableValues); for (int i = 0; i < original.Count; i++) { variableValues[i] = (IList)Activator.CreateInstance(original[i].GetType(), original[i]); } return copy; } #region NamedItem abstract Member Implementations public override IDeepCloneable Clone(Cloner cloner) { return new PreprocessingData(this, cloner); } #endregion #region IPreprocessingData Members public T GetCell(int columnIndex, int rowIndex) { return (T)variableValues[columnIndex][rowIndex]; } public virtual void SetCell(int columnIndex, int rowIndex, T value) { variableValues[columnIndex][rowIndex] = value; } public string GetCellAsString(int columnIndex, int rowIndex) { return variableValues[columnIndex][rowIndex].ToString(); } [Obsolete("use the index based variant, is faster")] public IList GetValues(string variableName) { return GetValues(GetColumnIndex(variableName)); } public IList GetValues(int columnIndex) { return (IList)variableValues[columnIndex]; } public virtual void SetValues(int columnIndex, IList values) { if (IsType(columnIndex)) { variableValues[columnIndex] = (IList)values; } else { throw new ArgumentException("The datatype of column " + columnIndex + " must be of type " + variableValues[columnIndex].GetType().Name + " but was " + typeof(T).Name); } } public virtual void InsertRow(int rowIndex) { foreach (IList column in variableValues.Values) { Type type = column.GetType().GetGenericArguments()[0]; column.Insert(rowIndex, type.IsValueType ? Activator.CreateInstance(type) : null); } } public virtual void DeleteRow(int rowIndex) { foreach (IList column in variableValues.Values) { column.RemoveAt(rowIndex); } } public virtual void InsertColumn(string variableName, int columnIndex) { variableValues.Add(columnIndex, new List(Rows)); variableNames.Insert(columnIndex, variableName); } public virtual void DeleteColumn(int columnIndex) { variableValues.Remove(columnIndex); variableNames.RemoveAt(columnIndex); } public IntRange TrainingPartition { get { return new IntRange(0, (int)(Rows * trainingToTestRatio)); } } public IntRange TestPartition { get { return new IntRange((int)(Rows * trainingToTestRatio), Rows); } } public string GetVariableName(int columnIndex) { return variableNames[columnIndex]; } public IEnumerable VariableNames { get { return variableNames; } } public int GetColumnIndex(string variableName) { return variableNames.IndexOf(variableName); } public bool IsType(int columnIndex) { return variableValues[columnIndex] is List; } public int Columns { get { return variableNames.Count; } } public int Rows { get { return variableValues.Count > 0 ? variableValues[0].Count : 0; } } public Dataset ExportToDataset() { IList values = new List(); for (int i = 0; i < Columns; ++i) { values.Add(variableValues[i]); } var dataset = new Dataset(variableNames, values); return dataset; } #endregion } }