#region License Information
/* HeuristicLab
* Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Optimization;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.DataPreprocessing {
[Item("PreprocessingContext", "PreprocessingContext")]
public class PreprocessingContext
: Item, IPreprocessingContext {
public ITransactionalPreprocessingData Data { get; private set; }
public ViewShortcutCollection ViewShortcuts { get; private set; }
public IDataAnalysisProblemData DataAnalysisProblemData { get; private set; }
public IAlgorithm Algorithm { get; private set; }
public IDataAnalysisProblem Problem { get; private set; }
public PreprocessingContext(IDataAnalysisProblemData dataAnalysisProblemData, IAlgorithm algorithm, IDataAnalysisProblem problem) {
Data = new TransactionalPreprocessingData(dataAnalysisProblemData);
DataAnalysisProblemData = dataAnalysisProblemData;
Algorithm = algorithm;
Problem = problem;
var searchLogic = new SearchLogic(Data);
var dataGridLogic = new DataGridLogic(Data);
var statisticsLogic = new StatisticsLogic(Data, searchLogic);
var manipulationLogic = new ManipulationLogic(Data, searchLogic, statisticsLogic);
var transformationLogic = new TransformationLogic(Data, searchLogic, statisticsLogic);
var lineChartLogic = new LineChartLogic(Data);
var histogramLogic = new HistogramLogic(Data);
var filterLogic = new FilterLogic();
ViewShortcuts = new ViewShortcutCollection {
new DataGridContent(dataGridLogic, manipulationLogic),
new StatisticsContent(statisticsLogic),
new FilterContent(filterLogic),
new TransformationContent(transformationLogic),
new LineChartContent(lineChartLogic),
new HistogramContent(histogramLogic)
};
}
private PreprocessingContext(PreprocessingContext original, Cloner cloner)
: base(original, cloner) {
Data = cloner.Clone(original.Data);
DataAnalysisProblemData = original.DataAnalysisProblemData;
Algorithm = original.Algorithm;
Problem = original.Problem;
}
public override IDeepCloneable Clone(Cloner cloner) {
return new PreprocessingContext(this, cloner);
}
public IItem ExportAlgorithmOrProblem() {
if (Algorithm != null) {
return ExportAlgorithm();
} else {
return ExportProblem();
}
}
public IProblem ExportProblem() {
return Export(Problem, SetupProblem);
}
public IAlgorithm ExportAlgorithm() {
return Export(Algorithm, SetupAlgorithm);
}
private IDataAnalysisProblem SetupProblem(IProblem problem) {
return (IDataAnalysisProblem)problem;
}
private IDataAnalysisProblem SetupAlgorithm(IAlgorithm algorithm) {
algorithm.Name = algorithm.Name + "(Preprocessed)";
algorithm.Runs.Clear();
return (IDataAnalysisProblem)algorithm.Problem;
}
private T Export(T original, Func setup)
where T : IItem {
var creator = new ProblemDataCreator(this);
var data = creator.CreateProblemData();
var clone = (T)original.Clone(new Cloner());
var problem = setup(clone);
problem.ProblemDataParameter.ActualValue = data;
problem.Name = "Preprocessed " + problem.Name;
return clone;
}
}
}