#region License Information /* HeuristicLab * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Optimization; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.DataPreprocessing { [Item("PreprocessingContext", "PreprocessingContext")] public class PreprocessingContext : Item, IPreprocessingContext { public ITransactionalPreprocessingData Data { get; private set; } public ViewShortcutCollection ViewShortcuts { get; private set; } public IDataAnalysisProblemData DataAnalysisProblemData { get; private set; } public IAlgorithm Algorithm { get; private set; } public IDataAnalysisProblem Problem { get; private set; } public PreprocessingContext(IDataAnalysisProblemData dataAnalysisProblemData, IAlgorithm algorithm, IDataAnalysisProblem problem) { Data = new TransactionalPreprocessingData(dataAnalysisProblemData); DataAnalysisProblemData = dataAnalysisProblemData; Algorithm = algorithm; Problem = problem; var searchLogic = new SearchLogic(Data); var dataGridLogic = new DataGridLogic(Data); var statisticsLogic = new StatisticsLogic(Data, searchLogic); var manipulationLogic = new ManipulationLogic(Data, searchLogic, statisticsLogic); var transformationLogic = new TransformationLogic(Data, searchLogic, statisticsLogic); var lineChartLogic = new LineChartLogic(Data); var histogramLogic = new HistogramLogic(Data); var filterLogic = new FilterLogic(); ViewShortcuts = new ViewShortcutCollection { new DataGridContent(dataGridLogic, manipulationLogic), new StatisticsContent(statisticsLogic), new FilterContent(filterLogic), new TransformationContent(transformationLogic), new LineChartContent(lineChartLogic), new HistogramContent(histogramLogic) }; } private PreprocessingContext(PreprocessingContext original, Cloner cloner) : base(original, cloner) { Data = cloner.Clone(original.Data); DataAnalysisProblemData = original.DataAnalysisProblemData; Algorithm = original.Algorithm; Problem = original.Problem; } public override IDeepCloneable Clone(Cloner cloner) { return new PreprocessingContext(this, cloner); } public IItem ExportAlgorithmOrProblem() { if (Algorithm != null) { return ExportAlgorithm(); } else { return ExportProblem(); } } public IProblem ExportProblem() { return Export(Problem, SetupProblem); } public IAlgorithm ExportAlgorithm() { return Export(Algorithm, SetupAlgorithm); } private IDataAnalysisProblem SetupProblem(IProblem problem) { return (IDataAnalysisProblem)problem; } private IDataAnalysisProblem SetupAlgorithm(IAlgorithm algorithm) { algorithm.Name = algorithm.Name + "(Preprocessed)"; algorithm.Runs.Clear(); return (IDataAnalysisProblem)algorithm.Problem; } private T Export(T original, Func setup) where T : IItem { var creator = new ProblemDataCreator(this); var data = creator.CreateProblemData(); var clone = (T)original.Clone(new Cloner()); var problem = setup(clone); problem.ProblemDataParameter.ActualValue = data; problem.Name = "Preprocessed " + problem.Name; return clone; } } }