#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Visualization.ChartControlsExtensions;
namespace HeuristicLab.DataPreprocessing {
public abstract class ScatterPlotContent : PreprocessingChartContent {
protected ScatterPlotContent(IFilteredPreprocessingData preprocessingData)
: base(preprocessingData) {
}
protected ScatterPlotContent(ScatterPlotContent content, Cloner cloner)
: base(content, cloner) {
}
public ScatterPlot CreateScatterPlot(string variableNameX, string variableNameY, string variableNameGroup = "-") {
ScatterPlot scatterPlot = new ScatterPlot();
IList xValues = PreprocessingData.GetValues(PreprocessingData.GetColumnIndex(variableNameX));
IList yValues = PreprocessingData.GetValues(PreprocessingData.GetColumnIndex(variableNameY));
var points = xValues.Zip(yValues, (x, y) => new Point2D(x, y)).ToList();
var validPoints = points.Where(p => !double.IsNaN(p.X) && !double.IsNaN(p.Y) && !double.IsInfinity(p.X) && !double.IsInfinity(p.Y)).ToList();
if (validPoints.Any()) {
try {
double axisMin, axisMax, axisInterval;
ChartUtil.CalculateOptimalAxisInterval(validPoints.Min(p => p.X), validPoints.Max(p => p.X), out axisMin, out axisMax, out axisInterval);
scatterPlot.VisualProperties.XAxisMinimumAuto = false;
scatterPlot.VisualProperties.XAxisMaximumAuto = false;
scatterPlot.VisualProperties.XAxisMinimumFixedValue = axisMin;
scatterPlot.VisualProperties.XAxisMaximumFixedValue = axisMax;
} catch (ArgumentOutOfRangeException) { } // error during CalculateOptimalAxisInterval
try {
double axisMin, axisMax, axisInterval;
ChartUtil.CalculateOptimalAxisInterval(validPoints.Min(p => p.Y), validPoints.Max(p => p.Y), out axisMin, out axisMax, out axisInterval);
scatterPlot.VisualProperties.YAxisMinimumAuto = false;
scatterPlot.VisualProperties.YAxisMaximumAuto = false;
scatterPlot.VisualProperties.YAxisMinimumFixedValue = axisMin;
scatterPlot.VisualProperties.YAxisMaximumFixedValue = axisMax;
} catch (ArgumentOutOfRangeException) { } // error during CalculateOptimalAxisInterval
}
if (variableNameGroup == null || variableNameGroup == "-") {
ScatterPlotDataRow scdr = new ScatterPlotDataRow(variableNameX + " - " + variableNameY, "", validPoints);
scdr.VisualProperties.IsVisibleInLegend = false;
scatterPlot.Rows.Add(scdr);
} else {
var groupValues = PreprocessingData.GetValues(PreprocessingData.GetColumnIndex(variableNameGroup));
var data = points.Zip(groupValues, (p, g) => new { p, g })
.Where(x => !double.IsNaN(x.p.X) && !double.IsNaN(x.p.Y) && !double.IsInfinity(x.p.X) && !double.IsInfinity(x.p.Y))
.ToList();
foreach (var groupValue in groupValues.Distinct().OrderBy(g => g)) {
var values = data.Where(x => x.g == groupValue || (double.IsNaN(x.g) && double.IsNaN(groupValue))).Select(v => v.p);
var row = new ScatterPlotDataRow(string.Format("{0} ({1})", variableNameGroup, groupValue), "", values) {
Name = groupValue.ToString("R"),
VisualProperties = { PointSize = 6 }
};
scatterPlot.Rows.Add(row);
}
}
return scatterPlot;
}
public DataRow GetCorrelationRow(string variableNameX, string variableNameY) {
var xValues = PreprocessingData.GetValues(PreprocessingData.GetColumnIndex(variableNameX));
var yValues = PreprocessingData.GetValues(PreprocessingData.GetColumnIndex(variableNameY));
double k, d;
OnlineCalculatorError err;
OnlineLinearScalingParameterCalculator.Calculate(xValues, yValues, out k, out d, out err);
double p = OnlinePearsonsRCalculator.Calculate(xValues, yValues, out err);
var data = new double[xValues.Count];
for (int i = 0; i < xValues.Count; i++) {
data[i]= k * i + d;
}
return new DataRow(string.Format("Correlation (R²={0})", p*p), "", data);
}
}
}