1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Analysis;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Problems.DataAnalysis;
|
---|
28 | using HeuristicLab.Visualization.ChartControlsExtensions;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.DataPreprocessing {
|
---|
31 |
|
---|
32 | public abstract class ScatterPlotContent : PreprocessingChartContent {
|
---|
33 | protected ScatterPlotContent(IFilteredPreprocessingData preprocessingData)
|
---|
34 | : base(preprocessingData) {
|
---|
35 | }
|
---|
36 |
|
---|
37 | protected ScatterPlotContent(ScatterPlotContent content, Cloner cloner)
|
---|
38 | : base(content, cloner) {
|
---|
39 | }
|
---|
40 |
|
---|
41 | public ScatterPlot CreateScatterPlot(string variableNameX, string variableNameY, string variableNameGroup = "-") {
|
---|
42 | ScatterPlot scatterPlot = new ScatterPlot();
|
---|
43 |
|
---|
44 | IList<double> xValues = PreprocessingData.GetValues<double>(PreprocessingData.GetColumnIndex(variableNameX));
|
---|
45 | IList<double> yValues = PreprocessingData.GetValues<double>(PreprocessingData.GetColumnIndex(variableNameY));
|
---|
46 |
|
---|
47 | var points = xValues.Zip(yValues, (x, y) => new Point2D<double>(x, y)).ToList();
|
---|
48 | var validPoints = points.Where(p => !double.IsNaN(p.X) && !double.IsNaN(p.Y) && !double.IsInfinity(p.X) && !double.IsInfinity(p.Y)).ToList();
|
---|
49 | if (validPoints.Any()) {
|
---|
50 | try {
|
---|
51 | double axisMin, axisMax, axisInterval;
|
---|
52 | ChartUtil.CalculateOptimalAxisInterval(validPoints.Min(p => p.X), validPoints.Max(p => p.X), out axisMin, out axisMax, out axisInterval);
|
---|
53 | scatterPlot.VisualProperties.XAxisMinimumAuto = false;
|
---|
54 | scatterPlot.VisualProperties.XAxisMaximumAuto = false;
|
---|
55 | scatterPlot.VisualProperties.XAxisMinimumFixedValue = axisMin;
|
---|
56 | scatterPlot.VisualProperties.XAxisMaximumFixedValue = axisMax;
|
---|
57 | } catch (ArgumentOutOfRangeException) { } // error during CalculateOptimalAxisInterval
|
---|
58 | try {
|
---|
59 | double axisMin, axisMax, axisInterval;
|
---|
60 | ChartUtil.CalculateOptimalAxisInterval(validPoints.Min(p => p.Y), validPoints.Max(p => p.Y), out axisMin, out axisMax, out axisInterval);
|
---|
61 | scatterPlot.VisualProperties.YAxisMinimumAuto = false;
|
---|
62 | scatterPlot.VisualProperties.YAxisMaximumAuto = false;
|
---|
63 | scatterPlot.VisualProperties.YAxisMinimumFixedValue = axisMin;
|
---|
64 | scatterPlot.VisualProperties.YAxisMaximumFixedValue = axisMax;
|
---|
65 | } catch (ArgumentOutOfRangeException) { } // error during CalculateOptimalAxisInterval
|
---|
66 | }
|
---|
67 |
|
---|
68 | if (variableNameGroup == null || variableNameGroup == "-") {
|
---|
69 | ScatterPlotDataRow scdr = new ScatterPlotDataRow(variableNameX + " - " + variableNameY, "", validPoints);
|
---|
70 | scdr.VisualProperties.IsVisibleInLegend = false;
|
---|
71 | scatterPlot.Rows.Add(scdr);
|
---|
72 | } else {
|
---|
73 | var groupValues = PreprocessingData.GetValues<double>(PreprocessingData.GetColumnIndex(variableNameGroup));
|
---|
74 | var data = points.Zip(groupValues, (p, g) => new { p, g })
|
---|
75 | .Where(x => !double.IsNaN(x.p.X) && !double.IsNaN(x.p.Y) && !double.IsInfinity(x.p.X) && !double.IsInfinity(x.p.Y))
|
---|
76 | .ToList();
|
---|
77 |
|
---|
78 | foreach (var groupValue in groupValues.Distinct().OrderBy(g => g)) {
|
---|
79 | var values = data.Where(x => x.g == groupValue || (double.IsNaN(x.g) && double.IsNaN(groupValue))).Select(v => v.p);
|
---|
80 | var row = new ScatterPlotDataRow(string.Format("{0} ({1})", variableNameGroup, groupValue), "", values) {
|
---|
81 | Name = groupValue.ToString("R"),
|
---|
82 | VisualProperties = { PointSize = 6 }
|
---|
83 | };
|
---|
84 | scatterPlot.Rows.Add(row);
|
---|
85 | }
|
---|
86 | }
|
---|
87 | return scatterPlot;
|
---|
88 | }
|
---|
89 |
|
---|
90 | public DataRow GetCorrelationRow(string variableNameX, string variableNameY) {
|
---|
91 | var xValues = PreprocessingData.GetValues<double>(PreprocessingData.GetColumnIndex(variableNameX));
|
---|
92 | var yValues = PreprocessingData.GetValues<double>(PreprocessingData.GetColumnIndex(variableNameY));
|
---|
93 |
|
---|
94 | double k, d;
|
---|
95 | OnlineCalculatorError err;
|
---|
96 | OnlineLinearScalingParameterCalculator.Calculate(xValues, yValues, out k, out d, out err);
|
---|
97 | double p = OnlinePearsonsRCalculator.Calculate(xValues, yValues, out err);
|
---|
98 |
|
---|
99 | var data = new double[xValues.Count];
|
---|
100 | for (int i = 0; i < xValues.Count; i++) {
|
---|
101 | data[i]= k * i + d;
|
---|
102 | }
|
---|
103 |
|
---|
104 | return new DataRow(string.Format("Correlation (R²={0})", p*p), "", data);
|
---|
105 | }
|
---|
106 | }
|
---|
107 | }
|
---|