1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections;
|
---|
24 | using System.Collections.Generic;
|
---|
25 | using System.Globalization;
|
---|
26 | using System.IO;
|
---|
27 | using System.Linq;
|
---|
28 | using System.Text;
|
---|
29 | using HeuristicLab.Common;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
33 | public class ClassificationCSVInstanceProvider : ClassificationInstanceProvider {
|
---|
34 | public override string Name {
|
---|
35 | get { return "CSV File"; }
|
---|
36 | }
|
---|
37 | public override string Description {
|
---|
38 | get {
|
---|
39 | return "";
|
---|
40 | }
|
---|
41 | }
|
---|
42 | public override Uri WebLink {
|
---|
43 | get { return new Uri("http://dev.heuristiclab.com/trac/hl/core/wiki/UsersFAQ#DataAnalysisImportFileFormat"); }
|
---|
44 | }
|
---|
45 | public override string ReferencePublication {
|
---|
46 | get { return ""; }
|
---|
47 | }
|
---|
48 |
|
---|
49 | public override IEnumerable<IDataDescriptor> GetDataDescriptors() {
|
---|
50 | return new List<IDataDescriptor>();
|
---|
51 | }
|
---|
52 |
|
---|
53 | public override IClassificationProblemData LoadData(IDataDescriptor descriptor) {
|
---|
54 | throw new NotImplementedException();
|
---|
55 | }
|
---|
56 |
|
---|
57 | public override bool CanImportData {
|
---|
58 | get { return true; }
|
---|
59 | }
|
---|
60 | public override IClassificationProblemData ImportData(string path) {
|
---|
61 | TableFileParser csvFileParser = new TableFileParser();
|
---|
62 |
|
---|
63 | csvFileParser.Parse(path);
|
---|
64 |
|
---|
65 | Dataset dataset = new Dataset(csvFileParser.VariableNames, csvFileParser.Values);
|
---|
66 | string targetVar = dataset.DoubleVariables.Last();
|
---|
67 |
|
---|
68 | // turn of input variables that are constant in the training partition
|
---|
69 | var allowedInputVars = new List<string>();
|
---|
70 | var trainingIndizes = Enumerable.Range(0, (csvFileParser.Rows * 2) / 3);
|
---|
71 | if (trainingIndizes.Count() >= 2) {
|
---|
72 | foreach (var variableName in dataset.DoubleVariables) {
|
---|
73 | if (dataset.GetDoubleValues(variableName, trainingIndizes).Range() > 0 &&
|
---|
74 | variableName != targetVar)
|
---|
75 | allowedInputVars.Add(variableName);
|
---|
76 | }
|
---|
77 | } else {
|
---|
78 | allowedInputVars.AddRange(dataset.DoubleVariables.Where(x => !x.Equals(targetVar)));
|
---|
79 | }
|
---|
80 |
|
---|
81 | ClassificationProblemData classificationData = new ClassificationProblemData(dataset, allowedInputVars, targetVar);
|
---|
82 |
|
---|
83 | int trainingPartEnd = trainingIndizes.Last();
|
---|
84 | classificationData.TrainingPartition.Start = trainingIndizes.First();
|
---|
85 | classificationData.TrainingPartition.End = trainingPartEnd;
|
---|
86 | classificationData.TestPartition.Start = trainingPartEnd;
|
---|
87 | classificationData.TestPartition.End = csvFileParser.Rows;
|
---|
88 |
|
---|
89 | classificationData.Name = Path.GetFileName(path);
|
---|
90 |
|
---|
91 | return classificationData;
|
---|
92 | }
|
---|
93 |
|
---|
94 | protected override IClassificationProblemData ImportData(string path, ClassificationImportType type, TableFileParser csvFileParser) {
|
---|
95 | int trainingPartEnd = (csvFileParser.Rows * type.Training) / 100;
|
---|
96 | List<IList> values = csvFileParser.Values;
|
---|
97 | if (type.Shuffle) {
|
---|
98 | values = Shuffle(values, csvFileParser.VariableNames.ToList().FindIndex(x => x.Equals(type.TargetVariable)),
|
---|
99 | type.Training, out trainingPartEnd);
|
---|
100 | }
|
---|
101 |
|
---|
102 | Dataset dataset = new Dataset(csvFileParser.VariableNames, values);
|
---|
103 |
|
---|
104 | // turn of input variables that are constant in the training partition
|
---|
105 | var allowedInputVars = new List<string>();
|
---|
106 | var trainingIndizes = Enumerable.Range(0, trainingPartEnd);
|
---|
107 | if (trainingIndizes.Count() >= 2) {
|
---|
108 | foreach (var variableName in dataset.DoubleVariables) {
|
---|
109 | if (dataset.GetDoubleValues(variableName, trainingIndizes).Range() > 0 &&
|
---|
110 | variableName != type.TargetVariable)
|
---|
111 | allowedInputVars.Add(variableName);
|
---|
112 | }
|
---|
113 | } else {
|
---|
114 | allowedInputVars.AddRange(dataset.DoubleVariables.Where(x => !x.Equals(type.TargetVariable)));
|
---|
115 | }
|
---|
116 |
|
---|
117 | ClassificationProblemData classificationData = new ClassificationProblemData(dataset, allowedInputVars, type.TargetVariable);
|
---|
118 |
|
---|
119 | classificationData.TrainingPartition.Start = 0;
|
---|
120 | classificationData.TrainingPartition.End = trainingPartEnd;
|
---|
121 | classificationData.TestPartition.Start = trainingPartEnd;
|
---|
122 | classificationData.TestPartition.End = csvFileParser.Rows;
|
---|
123 |
|
---|
124 | classificationData.Name = Path.GetFileName(path);
|
---|
125 |
|
---|
126 | return classificationData;
|
---|
127 | }
|
---|
128 |
|
---|
129 | protected List<IList> Shuffle(List<IList> values, int target, int trainingPercentage, out int trainingPartEnd) {
|
---|
130 | IList targetValues = values[target];
|
---|
131 | var group = targetValues.Cast<double>().GroupBy(x => x).Select(g => new { Key = g.Key, Count = g.Count() }).ToList();
|
---|
132 | Dictionary<double, double> taken = new Dictionary<double, double>();
|
---|
133 | foreach (var classCount in group) {
|
---|
134 | taken[classCount.Key] = (classCount.Count * trainingPercentage) / 100.0;
|
---|
135 | }
|
---|
136 |
|
---|
137 | List<IList> training = GetListOfIListCopy(values);
|
---|
138 | List<IList> test = GetListOfIListCopy(values);
|
---|
139 |
|
---|
140 | for (int i = 0; i < targetValues.Count; i++) {
|
---|
141 | if (taken[(double)targetValues[i]] > 0) {
|
---|
142 | AddRow(training, values, i);
|
---|
143 | taken[(double)targetValues[i]]--;
|
---|
144 | } else {
|
---|
145 | AddRow(test, values, i);
|
---|
146 | }
|
---|
147 | }
|
---|
148 |
|
---|
149 | trainingPartEnd = training.First().Count;
|
---|
150 |
|
---|
151 | training = Shuffle(training);
|
---|
152 | test = Shuffle(test);
|
---|
153 | for (int i = 0; i < training.Count; i++) {
|
---|
154 | for (int j = 0; j < test[i].Count; j++) {
|
---|
155 | training[i].Add(test[i][j]);
|
---|
156 | }
|
---|
157 | }
|
---|
158 |
|
---|
159 | return training;
|
---|
160 | }
|
---|
161 |
|
---|
162 | private void AddRow(List<IList> destination, List<IList> source, int index) {
|
---|
163 | for (int i = 0; i < source.Count; i++) {
|
---|
164 | destination[i].Add(source[i][index]);
|
---|
165 | }
|
---|
166 | }
|
---|
167 |
|
---|
168 | private List<IList> GetListOfIListCopy(List<IList> values) {
|
---|
169 | List<IList> newList = new List<IList>(values.Count);
|
---|
170 | for (int col = 0; col < values.Count; col++) {
|
---|
171 |
|
---|
172 | if (values[col] is List<double>)
|
---|
173 | newList.Add(new List<double>());
|
---|
174 | else if (values[col] is List<DateTime>)
|
---|
175 | newList.Add(new List<DateTime>());
|
---|
176 | else if (values[col] is List<string>)
|
---|
177 | newList.Add(new List<string>());
|
---|
178 | else
|
---|
179 | throw new InvalidOperationException();
|
---|
180 | }
|
---|
181 | return newList;
|
---|
182 | }
|
---|
183 |
|
---|
184 | private List<IList> NormalizeClasses(List<IList> values) {
|
---|
185 | int column = GetLastDoubleColumn(values);
|
---|
186 | Dictionary<object, int> count = new Dictionary<object, int>();
|
---|
187 | foreach (var item in values[column]) {
|
---|
188 | if (count.Keys.Contains(item)) {
|
---|
189 | count[item]++;
|
---|
190 | } else {
|
---|
191 | count.Add(item, 1);
|
---|
192 | }
|
---|
193 | }
|
---|
194 | int min = count.Values.Min();
|
---|
195 | Dictionary<object, int> taken = new Dictionary<object, int>();
|
---|
196 | foreach (var key in count.Keys) {
|
---|
197 | taken[key] = 0;
|
---|
198 | }
|
---|
199 | List<IList> normalizedValues = new List<IList>(values.Count);
|
---|
200 | for (int col = 0; col < values.Count; col++) {
|
---|
201 |
|
---|
202 | if (values[col] is List<double>)
|
---|
203 | normalizedValues.Add(new List<double>());
|
---|
204 | else if (values[col] is List<DateTime>)
|
---|
205 | normalizedValues.Add(new List<DateTime>());
|
---|
206 | else if (values[col] is List<string>)
|
---|
207 | normalizedValues.Add(new List<string>());
|
---|
208 | else
|
---|
209 | throw new InvalidOperationException();
|
---|
210 | }
|
---|
211 | for (int i = 0; i < values.First().Count; i++) {
|
---|
212 | if (taken[values[column][i]] < min) {
|
---|
213 | taken[values[column][i]]++;
|
---|
214 | for (int col = 0; col < values.Count; col++) {
|
---|
215 | normalizedValues[col].Add(values[col][i]);
|
---|
216 | }
|
---|
217 | }
|
---|
218 | }
|
---|
219 | return normalizedValues;
|
---|
220 | }
|
---|
221 |
|
---|
222 | private int GetLastDoubleColumn(List<IList> values) {
|
---|
223 | for (int i = values.Count - 1; i >= 0; i--) {
|
---|
224 | if (values[i] is List<double>) {
|
---|
225 | return i;
|
---|
226 | }
|
---|
227 | }
|
---|
228 | throw new ArgumentException("No possible Target Variable could be found!");
|
---|
229 | }
|
---|
230 |
|
---|
231 | public override bool CanExportData {
|
---|
232 | get { return true; }
|
---|
233 | }
|
---|
234 | public override void ExportData(IClassificationProblemData instance, string path) {
|
---|
235 | var strBuilder = new StringBuilder();
|
---|
236 | var colSep = CultureInfo.CurrentCulture.TextInfo.ListSeparator;
|
---|
237 | foreach (var variable in instance.Dataset.VariableNames) {
|
---|
238 | strBuilder.Append(variable.Replace(colSep, String.Empty) + colSep);
|
---|
239 | }
|
---|
240 | strBuilder.Remove(strBuilder.Length - colSep.Length, colSep.Length);
|
---|
241 | strBuilder.AppendLine();
|
---|
242 |
|
---|
243 | var dataset = instance.Dataset;
|
---|
244 |
|
---|
245 | for (int i = 0; i < dataset.Rows; i++) {
|
---|
246 | for (int j = 0; j < dataset.Columns; j++) {
|
---|
247 | if (j > 0) strBuilder.Append(colSep);
|
---|
248 | strBuilder.Append(dataset.GetValue(i, j));
|
---|
249 | }
|
---|
250 | strBuilder.AppendLine();
|
---|
251 | }
|
---|
252 |
|
---|
253 | using (var writer = new StreamWriter(path)) {
|
---|
254 | writer.Write(strBuilder);
|
---|
255 | }
|
---|
256 | }
|
---|
257 | }
|
---|
258 | }
|
---|