#region License Information
/* HeuristicLab
* Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.IO;
using System;
using HeuristicLab.Random;
using HeuristicLab.Common;
using System.Collections.Generic;
using System.Diagnostics;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using System.Linq;
using System.Globalization;
using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
namespace HeuristicLab.Problems.DataAnalysis.Tests {
[TestClass()]
public class LinearScalingTest {
[TestMethod]
public void CalculateScalingParametersTest() {
var testData = new double[,] {
{5,1,1,1,2,1,3,1,1,2},
{5,4,4,5,7,10,3,2,1,2},
{3,1,1,1,2,2,3,1,1,2},
{6,8,8,1,3,4,3,7,1,2},
{4,1,1,3,2,1,3,1,1,2},
{8,10,10,8,7,10,9,7,1,4},
{1,1,1,1,2,10,3,1,1,2},
{2,1,2,1,2,1,3,1,1,2},
{2,1,1,1,2,1,1,1,5,2},
{4,2,1,1,2,1,2,1,1,2},
{1,1,1,1,1,1,3,1,1,2},
{2,1,1,1,2,1,2,1,1,2},
{5,3,3,3,2,3,4,4,1,4},
{8,7,5,10,7,9,5,5,4,4},
{7,4,6,4,6,1,4,3,1,4},
{4,1,1,1,2,1,2,1,1,2},
{4,1,1,1,2,1,3,1,1,2},
{10,7,7,6,4,10,4,1,2,4},
{6,1,1,1,2,1,3,1,1,2},
{7,3,2,10,5,10,5,4,4,4},
{10,5,5,3,6,7,7,10,1,4}
};
double alpha, beta;
int n = testData.GetLength(0);
{
IEnumerable x = from rows in Enumerable.Range(0, n)
select testData[rows, 0];
IEnumerable y = from rows in Enumerable.Range(0, n)
select testData[rows, 1];
SymbolicRegressionScaledMeanSquaredErrorEvaluator.CalculateScalingParameters(x, y, out beta, out alpha);
Assert.AreEqual(alpha, 2.757281, 1.0E-6);
Assert.AreEqual(beta, 0.720267, 1.0E-6);
IEnumerable scaledY = from value in y select value * beta + alpha;
Assert.AreEqual(x.Average(), scaledY.Average(), 1.0E-6);
}
{
IEnumerable x = from rows in Enumerable.Range(0, n)
select testData[rows, 2] * 1.0E3;
IEnumerable y = from rows in Enumerable.Range(0, n)
select testData[rows, 8] * 1.0E-3;
SymbolicRegressionScaledMeanSquaredErrorEvaluator.CalculateScalingParameters(x, y, out beta, out alpha);
IEnumerable scaledY = from value in y select value * beta + alpha;
Assert.AreEqual(x.Average(), scaledY.Average(), 1.0E-6);
}
}
}
}