#region License Information /* HeuristicLab * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Common; namespace HeuristicLab.Problems.DataAnalysis.Operators { [Item("WeightedParentsQualityVarianceComparator", "Compares the quality and variance of the quality against that of its parents (assumes the parents are subscopes to the child scope). This operator works with any number of subscopes > 0.")] [StorableClass] public class WeightedParentsQualityVarianceComparator : SingleSuccessorOperator, ISubScopesQualityComparator { public IValueLookupParameter MaximizationParameter { get { return (IValueLookupParameter)Parameters["Maximization"]; } } public ILookupParameter ResultParameter { get { return (ILookupParameter)Parameters["Result"]; } } public IValueLookupParameter ConfidenceIntervalParameter { get { return (IValueLookupParameter)Parameters["ConfidenceInterval"]; } } public ILookupParameter LeftSideParameter { get { return (ILookupParameter)Parameters["LeftSide"]; } } public ILookupParameter LeftSideVarianceParameter { get { return (ILookupParameter)Parameters["LeftSideVariance"]; } } public ILookupParameter LeftSideSamplesParameter { get { return (ILookupParameter)Parameters["LeftSideSamples"]; } } public ILookupParameter> RightSideParameter { get { return (ILookupParameter>)Parameters["RightSide"]; } } public ILookupParameter> RightSideVariancesParameters { get { return (ILookupParameter>)Parameters["RightSideVariances"]; } } public ILookupParameter> RightSideSamplesParameters { get { return (ILookupParameter>)Parameters["RightSideSamples"]; } } [StorableConstructor] protected WeightedParentsQualityVarianceComparator(bool deserializing) : base(deserializing) { } protected WeightedParentsQualityVarianceComparator(WeightedParentsQualityVarianceComparator original, Cloner cloner) : base(original, cloner) { } public WeightedParentsQualityVarianceComparator() : base() { Parameters.Add(new ValueLookupParameter("Maximization", "True if the problem is a maximization problem, false otherwise")); Parameters.Add(new LookupParameter("Result", "The result of the comparison: True means Quality is better, False means it is worse than parents.")); Parameters.Add(new ValueLookupParameter("ConfidenceInterval", "The confidence interval used for the test.", new DoubleValue(0.05))); Parameters.Add(new LookupParameter("LeftSide", "The quality of the child.")); Parameters.Add(new LookupParameter("LeftSideVariance", "The variances of the quality of the new child.")); Parameters.Add(new LookupParameter("LeftSideSamples", "The number of samples used to calculate the quality of the new child.")); Parameters.Add(new ScopeTreeLookupParameter("RightSide", "The qualities of the parents.")); Parameters.Add(new ScopeTreeLookupParameter("RightSideVariances", "The variances of the parents.")); Parameters.Add(new ScopeTreeLookupParameter("RightSideSamples", "The number of samples used to calculate the quality of the parent.")); } public override IDeepCloneable Clone(Cloner cloner) { return new WeightedParentsQualityVarianceComparator(this, cloner); } public override IOperation Apply() { double leftQuality = LeftSideParameter.ActualValue.Value; double leftVariance = LeftSideVarianceParameter.ActualValue.Value; int leftSamples = LeftSideSamplesParameter.ActualValue.Value; ItemArray rightQualities = RightSideParameter.ActualValue; ItemArray rightVariances = RightSideVariancesParameters.ActualValue; ItemArray rightSamples = RightSideSamplesParameters.ActualValue; if (rightQualities.Length < 1) throw new InvalidOperationException(Name + ": No subscopes found."); bool maximization = MaximizationParameter.ActualValue.Value; int bestParentIndex; double bestParentQuality; double bestParentVariance; int bestParentSamples; if (maximization) bestParentQuality = rightQualities.Max(x => x.Value); else bestParentQuality = rightQualities.Min(x => x.Value); bestParentIndex = rightQualities.FindIndex(x => x.Value == bestParentQuality); bestParentVariance = rightVariances[bestParentIndex].Value; bestParentSamples = rightSamples[bestParentIndex].Value; double xmean = leftQuality; double xvar = leftVariance; int n = leftSamples; double ymean = bestParentQuality; double yvar = bestParentVariance; double m = bestParentSamples; //following code taken from ALGLIB studentttest line 351 // Two-sample unpooled test double p = 0; double stat = (xmean - ymean) / Math.Sqrt(xvar / n + yvar / m); double c = xvar / n / (xvar / n + yvar / m); double df = (n - 1) * (m - 1) / ((m - 1) * alglib.math.sqr(c) + (n - 1) * (1 - alglib.math.sqr(c))); if ((double)(stat) > (double)(0)) p = 1 - 0.5 * alglib.ibetaf.incompletebeta(df / 2, 0.5, df / (df + alglib.math.sqr(stat))); else p = 0.5 * alglib.ibetaf.incompletebeta(df / 2, 0.5, df / (df + alglib.math.sqr(stat))); double bothtails = 2 * Math.Min(p, 1 - p); double lefttail = p; double righttail = 1 - p; bool result = false; // reject only if the child is significantly worse if (maximization) { if (bothtails > ConfidenceIntervalParameter.ActualValue.Value) result = true; else if (leftQuality > bestParentQuality) result = true; else result = false; } else { if (bothtails > ConfidenceIntervalParameter.ActualValue.Value) result = true; else if (leftQuality < bestParentQuality) result = true; else result = false; } BoolValue resultValue = ResultParameter.ActualValue; if (resultValue == null) { ResultParameter.ActualValue = new BoolValue(result); } else { resultValue.Value = result; } return base.Apply(); } } }